Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Background: Diabetes mellitus is a chronic disease with an increasing prevalence worldwide and characterized by an increase in oxidative stress and inflammation. The most important factor that is responsible for oxidative stress and production of reactive oxygen species (ROS) is hyperglycemia. The major targets of ROS are proteins. The most common and widely used biomarker of severe oxidative protein damage is protein carbonyl content.
The study was designed to assess the serum level of protein carbonyl as a marker of protein oxidation in patients with type 2 diabetes mellitus and to evaluate the effect of age, body weight, waist circumference, diabetic control and disease duration on the level
... Show MoreThe convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreThe effect of compound machine on wheat "Tamuz cultivar" was studied based on some technical indicators which were tested under three practical speed (PS) of 2.015, 3.143, and 4.216 km.hr-1 and three tillage depth (TD) of 11, 13, and 15cm. The split-split plot arrangement in RCBD with three replications was used. The results showed that the PS of 2.015km.hr-1 was major best than other two speed in all studied conditions, physical properties (SBD and TSP), mechanical parameters (FD, (DP and LAS), and yield and growth parameters (PVI, BY and HI). The TD of 11cm was major effect to the other two levels TD of 13 and TD of 15cm in all studied conditions. All interactions were significant,
The influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreThe effect of compound machine on wheat "Tamuz cultivar" was studied based on some technical indicators which were tested under three practical speed (PS) of 2.015, 3.143, and 4.216 km.hr-1 and three tillage depth (TD) of 11, 13, and 15cm. The split-split plot arrangement in RCBD with three replications was used. The results showed that the PS of 2.015km.hr-1 was major best than other two speed in all studied conditions, physical properties (SBD and TSP), mechanical parameters (FD, (DP and LAS), and yield and growth parameters (PVI, BY and HI). The TD of 11cm was major effect to the other two levels TD of 13 and TD of 15cm in all studied conditions. All interactions were significant,