Preferred Language
Articles
/
DkK6SJoBMeyNPGM33cDP
Novel Approximate Solutions for Nonlinear Blasius Equations
...Show More Authors

The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very good agreement. In addition, the convergence of the proposed approximate methods is given based on one of the Banach fixed point theorem results.

Crossref
View Publication
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
...Show More Authors

This paper aims to find new analytical closed-forms to the  solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.
...Show More Authors

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Bn Al-haitham Journal For Pure And Applied Sciences
Analytical Solutions to Investigate Fractional Newell-Whitehead Nonlinear Equationusing SumuduTransform Decomposition Method
...Show More Authors

Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in

... Show More
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions
...Show More Authors

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Approximate Regular Modules
...Show More Authors

There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Linear and Nonlinear Optical Properties of Anthocyanin Dye from Red Cabbage in Different pH Solutions
...Show More Authors

This article studied some linear and nonlinear optical characteristics of different pH solutions from anthocyanin dye extract at 180 oC from red cabbage. First, the linear spectral characteristics, including absorption and transmittance in the range 400-800 nm for anthocyanin solution 5% v/v with different pHs, were achieved utilizing a UV/VIS spectrophotometer. The experimental results reveal a shift in the absorption toward the longer wavelength direction as pH values increment. Then, the nonlinear features were measured using the Z-scan technique with a CW 532 nm laser to measure the nonlinear absorption coefficient through an open aperture. A close aperture (diameter 2 mm) calculates the nonlinear refractive index. The open Z-scan sh

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Crossref