The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta method (RK4), which gives very good agreement. In addition, the convergence of the proposed approximate methods is given based on one of the Banach fixed point theorem results.
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreThe research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreIn the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.
In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.
In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
Physics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control paramete
... Show More