The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreAt present, the ability to promote national economy by adjusting to political, economic, and technological variables is one of the largest challenges faced by organization productivity. This challenge prompts changes in structure and line productivity, given that cash has not been invested. Thus, the management searches for investment opportunities that have achieved the optimum value of the annual increases in total output value of the production line workers in the laboratory. Therefore, the application of dynamic programming model is adopted in this study by addressing the division of investment expenditures to cope with market-dumping policy and to strive non-stop production at work.
In the last years, a new technology called Cloud computing has been developed. Empirical and previous studies, commonly examined in business field and other domains. In this study, the significant factors that affecting the adoption of cloud computing have been examined using a frequency analysis that have been explored by the previous studies. The results showed that the most effected factors were relative advantage which followed by security and privacy, complexity, innovativeness, and external support. In this study the model of technology organization-environment was used to examine the significant factors that affecting the adoption of cloud computing.
This study includes adding chemicals to gypseous soil to improve its collapse characteristics. The collapse behavior of gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59% was investigated using five types of additions (cement dust, powder sodium meta-silicate, powder activated carbon, sodium silicate solution, and granular activated carbon). The soil was mixed by weight with cement dust (10, 20, and 30%), powder sodium meta-silicate (6%), powder activated carbon (10%), sodium silicate solution (3, 6, and 9%), and granular activated carbon (5, 10, and 15%). The collapse potential is reduced by 86, 71, 43, 37, and 35% when 30% cement dust, 6% powder sodium meta-silicate, 10% powder activated
... Show MoreCantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successful
... Show More