Preferred Language
Articles
/
8hYDe4cBVTCNdQwClFPP
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF), k-Nearest Neighbor (k-NN), Sequential Minimal Optimization (SMO), Naïve Bayes (NB), and Decision Tree (DT). The performance of the system validated over Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of the experiments showed given good accuracy compared with the previous studies using a fusion of a few numbers of features with the RF classifier.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Sustainable ENERGY by using AI
...Show More Authors

As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,

... Show More
View Publication
Crossref
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Shadow Removal Using Segmentation Method
...Show More Authors

Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.

View Publication Preview PDF
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Proposing a Scheme for Human Interactive Proof Test using Plasma Effect
...Show More Authors

            Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering
...Show More Authors

View Publication
Scopus (143)
Crossref (142)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of-Copper Ions-from Aqueous Solution Using Liquid-Surfactant-Membrane Technique
...Show More Authors

Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
Extraction of heavy metals from contaminated soils using EDTA and HCl
...Show More Authors

The present study examines the extraction of lead (Pb), cadmium (Cd) and nickel (Ni) from   a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA) and hydrochloric acid (HCl) solution were used as extractants.  Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni ).  A set of batch experiments were carried out at different conditions of  extractant concentration , contact time, pH and agitation speed. The results  showed  that the  maximum removal efficiencies  of (Cd, Pb  and Ni ) were (97, 88 and 24 )&nbs

... Show More
View Publication
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks
...Show More Authors

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Bilinear System Identification Using Subspace Method
...Show More Authors

In this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .

View Publication Preview PDF
Crossref