Preferred Language
Articles
/
8hYDe4cBVTCNdQwClFPP
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF), k-Nearest Neighbor (k-NN), Sequential Minimal Optimization (SMO), Naïve Bayes (NB), and Decision Tree (DT). The performance of the system validated over Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of the experiments showed given good accuracy compared with the previous studies using a fusion of a few numbers of features with the RF classifier.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Planner And Development
Mapping Paddy Rice Fields Using Landsat and Sentinel Radar Images in Urban Areas for Agriculture Planning
...Show More Authors

     This research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Desulfurization of AL-Ahdab Crude Oil using Oxidative Processes
...Show More Authors

Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD) sour crude oil (3.9wt% sulfur content). In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the oxidation/adsorption scheme, the experimental results indicated that the oxidation desulfurization efficiency was enhanced on using activated carbon as catalyst/sorbent. The effects of the operating conditions (contact time, temperat

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Oil from Eucalyptus Camadulensis Using Water Distillation Method
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.

View Publication Preview PDF
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of atropine from Datura Innoxia using liquid membrane Technique
...Show More Authors

Selective recovery of atropine from Datura innoxia seeds was studied. Applying pertraction in a rotating film contactor (RFC) the alkaloid was successfully recovered from native aqueous extracts obtained from the plant seeds. Decane as a liquid membrane and sulfuric acid as a stripping agent were used. Pertraction from native liquid extracts provided also a good atropine refinement, since the most of co-extracted from the plant species remained in the feed or membrane solution. Solid–liquid extraction of atropine from Datura innoxia seeds was coupled with RF-pertraction in order to purify simultaneously the extract obtained from the plant. Applying the integrated process, proposed in this study, a product containing 92.6% atropine was

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (51)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
Scheme for Generating True Random Numbers using Electro-mechanical Switches
...Show More Authors

This paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the exp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Human Pose Estimation Algorithm Using Optimized Symmetric Spatial Transformation Network
...Show More Authors

Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Dewatering of Kerosene using Hydrocyclone
...Show More Authors

Water/oil emulsion is considered as the most refractory mixture to separate because of the interference of the two immiscible liquids, water and oil. This research presents a study of dewatering of water / kerosene emulsion using hydrocyclone. The effects of factors such as: feed flow rate (3, 5, 7, 9, and 11 L/min), inlet water concentration of the emulsion (5%, 7.5%, 10%, 12.5%, and 15% by volume), and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the separation efficiency and pressure drop were studied. Dimensional analysis using Pi theorem was applied for the first time to model the hydrocyclone based on the experimental data. It was shown that the maximum separation efficiency; at split ratio 0.1, was 94.3% at 10% co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref