In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacement can be minimized to about 70.1 % and the settling time is reduced to about 48.4 %. Also, the results have shown that the actuator force can reach 68 % of the body weight under the worst studied road conditions.
Abstract:
the system of Administrative Control in organizations meets the need to check on the optimal use and proper resources and conservation to achieve the objectives sought by the organization, hence the system of Administrative Control is part of the overall system in any organization that has undergone evolution always to be able to keep up with progress in the development of other sciences, and that the growth of coherence between subordinates in the organization means the ability to influence the opinions, ideas and attitudes to change it for directions the organization and its values and this is reflected positively on the coherence of the organization, the researcher interest of the imp
This paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.
In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.
Self control is the perception of the individual of his duty at, the capacity of self testing in systematic durations and the ability of individuate to control his behavior, The control will be spontaneous when the individual will have a special ideas about the correct or incorrect behavior and choosing his way according it.
The present study airs at:
1- building and measuring self control and balancing among means among university students according to gender and specialization.
To achieve the above mention aim, the two researchers built a scale of self control depending on some theories and applying it on a sample consists of (400) male and female students in Baghdad university studying in scientific and human fields. The two
The research aims to prepare a report by the external auditor (Federal Office of Financial Supervision) for the control environment it is includes financial control, commitment and performance of the North Oil Company (extractive) according to the causes of pollution. The research problem it is not the Federal Office of Financial Supervision preparation a report on the things the environment include the prevent or reduction failure the administration of the causes of the pollution caused by oil mining industry by both bad planning or operational or related to efficient human resources as well as of technology to use and resulting from non-compliance local laws and instructions, as well as the inefficiency of spending on environme
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreBackground: It is important to achieve good glycemic control to avoid long-term diabetic complications. It has been largely debated about the role of correct way of insulin administration to get the desired glycemic control.
Objective: To evaluate the effect of teaching diabetic patients who are on insulin therapy the correct way of injecting insulin and its effect on glycemic control.
Methods: A non randomized clinical trial with 820 diabetic patients on insulin therapy on whom A1 c estimation was performed before and after three months of teaching them the right injection technique.
Results : Sixty seven patients (8.17%) had A1 c 6.5% before they were enrolled in the study while the majority (753 patents, 91.82%) had A1 c 6.5%
This paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show More