Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Wed Mar 23 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of a Training Program for the Development of Moral Intelligence among Preparatory Students
...Show More Authors

This current research aims to identify the effectiveness of a training program in developing moral intelligence and mutual social confidence among middle school students. The researcher made a number of hypotheses for this purpose to achieve the goal of the research.                             

The researcher relied on the (Al Zawaida 2011) scale prepared according to Coles (1997), including (60) items, and the mutual social trust scale for (Nazmi 2001) based on Roter's theory including (38) items.               &nbsp

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Educational And Psychological Researches
Analysis of computer textbooks content for intermediate stage according to the theory of multiple intelligence
...Show More Authors

The purpose of current study is to analyze the computer textbooks content for intermediate stage in Iraq according to the theory of multiple intelligence. By answering the following question “what is the percentage of availability of multiple intelligence in the content of the computer textbooks on intermediate stage (grade I, II) for the academic year (2017-2018)? The researcher followed the descriptive analytical research approach (content analysis), and adopted an explicit idea for registration. The research tool was prepared according the Gardner’s classification of multiple intelligence. It has proven validity and reliability. The study found the percentage of multiple intelligence in the content of computer textbooks for the in

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 21 2023
Journal Name
International Journal Of Emerging Technologies In Learning (ijet)
Impact of Deep Learning Strategy in Mathematics Achievement and Practical Intelligence among High School Students
...Show More Authors

— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
...Show More Authors

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm
...Show More Authors

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Roadway Deterioration Prediction Using Markov Chain Modeling (Wasit Governorate/ Iraq as a Case Study)
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Diagnostic Evaluation of Uterine Artery Doppler Imaging for the Prediction of Early Abnormal Pregnancy
...Show More Authors

Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was

... Show More
Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Diagnostic Evaluation of Uterine Artery Doppler Imaging for the Prediction of Early Abnormal Pregnancy
...Show More Authors

Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy.

Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when a

... Show More
View Publication Preview PDF
Crossref