Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Use Conventional and Statistical Methods for Porosity Estimating in Carbonate Reservoir in Southern Iraq, Case Study
...Show More Authors

Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol

... Show More
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Engineering
A Comprehensive Review for Integrating Petrophysical Properties, Rock Typing, and Geological Modeling for Enhanced Reservoir Characterization
...Show More Authors

Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Petroleum
Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition
...Show More Authors

Realistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the

... Show More
Preview PDF
Scopus (52)
Crossref (48)
Scopus Crossref
Publication Date
Sun Nov 19 2017
Journal Name
Iraqi Journal Of Laser
Effects of Diode Laser 940 nm with and without 5 % Sodium Fluoride White Varnish with Tri-calcium Phosphate on Dentin Permeability (In vitro study)
...Show More Authors

It is found that hypersensitive teeth have a larger number and wider patent tubules than those of non-sensitive teeth. Objective: The aim of this study is to compare between the effects of diode laser at different power densities, with and without sodium fluoride on the sealing of exposed dentinal tubules and dentin permeability. Materials and methods: 118 teeth were used. Samples were divided into three major groups. The first consisted of 100 teeth used for permeability test. The second consisted of 16 teeth for measuring external surface temperature elevation while irradiation. The third, in turn, consisted of one pair of teeth observed under SEM for dentine surface morphology analysis. Results: For dentin permeability measurement, th

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Iraqi Journal Of Laser
The Effect of using 940 nm Diode Laser in Comparison with Endoactivator on Radicular Dentin Permeability and Smear Layer Removal (An in Vitro Study)
...Show More Authors

Abstract: The aim of this study is to assess the effectiveness of 940 nm diode laser in comparison to Endoactivator in elimination of smear layer in terms of radicular dentin permeability and ultra-structural changes of root canal walls by SEM evaluation. Twenty-eight single-rooted extracted lower premolars were instrumented up to size X4 (protaper Next, Dentsaply) and divided into two experimental groups according to the irrigation system, G1; activated by EndoActivator and G2; activated by Diode laser 940 nm, CW mode, 1.7 W. Afterward, the roots were made externally impermeable, filled with 2%methylene blue dye, divided horizontally into three segments representing the apical, middle, and coronal thirds then examined under stereo- micr

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Impact of Strategic Management Accounting Techniques on the Reliability of Financial Statements:: The Impact of Strategic Management Accounting Techniques on the Reliability of Financial Statements:
...Show More Authors

The objective that the researcher seeks to achieve through this research is to clarify the relationship between strategic management accounting techniques and the reliability of financial statements, and to measure the impact of these techniques as an independent variable with its three dimensions, which are: activities-based cost, target cost, and benchmarking on the reliability of financial statements as a dependent variable. To achieve this objective, the researcher did the following: First: Determine the research problem through the following question: Do strategic management accounting techniques affect the reliability of financial statements in industrial companies listed on the Palestine Exchange? Second: Making the analytical des

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Central European Agriculture
Power requirements for corn silage harvesters and application of precision agricultural techniques: a review
...Show More Authors

The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
International Journal Of Emerging Technologies In Learning
The Effect of Cognitive Modeling in Mathematics Achievement and Creative Intelligence for High School Students
...Show More Authors

Scopus (7)
Scopus
Publication Date
Fri Mar 15 2019
Journal Name
Journal Of The College Of Education For Women
Exploring the Effectiveness of two Scales for Measuring Cultural Intelligence of the Preparatory School Students
...Show More Authors

The present study aims at exploring tow cultural intelligence scales of preparatory school students. It also aims at finding out the statistically significant differences according to gender and specification. Accordingly, the present study seeks to answer the following questions:

  1. Is there cultural intelligence of the preparatory school students?
  2. Is there any statistically significant differences according to gender and specification variables?
  3. Is there a scale more effective than cultural intelligence scales?

The stratified random sampling method is used to for selecting the sample of (216) students of scientific and humanistic specifications from

... Show More
View Publication Preview PDF