This study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a potent tool for generating optimal designs for such energy harvesting devices, contingent on the specified assumptions and constraints outlined in this paper. The foundational steps in the design process commence with the formulation of modeling equations, contingent on four critical design parameters. This comprehensive model is implemented in ANSYS, yielding an optimized system configuration. Subsequently, the values representing the generated power for these optimal design parameters are ascertained. The culmination of this research underscores that superior outcomes are achieved with a 0.5 D separation between the beam and cylinder, a cylinder diameter of 50 mm, and a flow velocity of 1.25 meters per second.
Abstract: In the current research the absorption and fluorescence spectrum of Coumarin (334) and Rhodamine (590) in ethanol solvent at different concentration (10-3, 10-4, 10-5) M had been studied. The absorption intensity of these dyes increases as the Concentration increase in addition to that the spectrum was shifted towards the longer wavelength (red shift). The energy transfer process has been investigated after achievement this condition. The fluorescence peak intensity of donor molecule was decrease and its bandwidth will increases on the contrary of the acceptor molecule its intensity increase gradually and its bandwidth decreases as the acceptor concentration increase.
The purpose of this study is to evaluate the hydraulic performance and efficiency of using direction diverting blocks, DDBs, fixed on the surface on an Ogee spillway in reducing the acceleration and dissipating the energy of the incoming supercritical flow. Fifteen types of DDB models were made from wood with a triangulate shape and different sizes were used. Investigation tests on pressure distribution at the DDBs boundaries were curried out to insure there is no negative pressures is developed that cause cavitation. In these tests, thirty six test runs were accomplished by using six types of blocks with the same size but differ in apex angle. Results of these test showed no negative pressures developed at the boundarie
... Show MoreIn this paper, we propose an approach to estimate the induced potential, which is generated by swift heavy ions traversing a ZnO thin film, via an energy loss function (ELF). This induced potential is related to the projectile charge density, ρq(k) and is described by the extended Drude dielectric function. At zero momentum transfer, the resulting ELF exhibits good agreement with the previously reported results. The ELF, obtained by the extended Drude model, displays a realistic behavior over the Bethe ridge. It is observed that the induced potential relies on the heavy ion velocity and charge state q. Further, the numerical results show that the induced potential for neutral H, as projectile, dominates when the heavy ion velocity is less
... Show MoreThe aim of the research is a techno-economic analysis of the use of concentrated solar energy technologies in the Iraqi city, considering the concentrated solar energy technology is a renewable energy technology that derives its resources from the sun and is replenished at a rate that exceeds its use. It is also inexhaustible and environmentally friendly energy from its environmental footprint, unlike traditional fossil energy which produces greenhouse gases and a major cause of global warming.
This research measures the costs of concentrated solar energy technology to Reduce the effects caused by other energies and work to fill part of the shortfall in the total electricity production, even at a specific percentage, in preparati
... Show MoreThe aim of this study is to look at the potential of a local sustainable energy network in a pre-existing context to develop a novel design beneficial to the environment. Nowadays, the concept of smart cities is still in the developmental phase/stage andwe are currently residing in a transitional period, therefore it is very important to discover new solutions that show direct benefits the people may get from transforming their city from a traditional to a smart city. Using experience and knowledge of successful projects in various European and non-European smart cities, this study attempts to demonstrate the practical potential of gradually moving existing cities to t
... Show MoreA theoretical study by using computer model is presented to study the energy characteristics of the vibrational – rotational levels as a function of the vibrational and rotational quantum number, respectively. The calculations were based on the basis of a multilevel model taking into account the non-equilibrium population of the rotational levels. The computational investigation has been performed to examine the vibrational-rotational characteristics of some hydrogen halides chemical laser molecules. This program takes into account the various molecules of chemical lasers such as, Hydrogen Fluoride (HF), Deuterium Fluoride (DF), Hydrogen Chloride (HCl), and Deuterium Chloride (DCl). The practical difficulties associated with this
... Show MoreIn this paper, the dynamic of quark and anti-quark interaction has been used to study the production of photons in the annihilation process based on the theory of chromodynamic. The rate of the photon is to be calculated for charm and anti-strange interaction c→γg system with critical temperature 113 and 130 MeV and photon energy GeV/c. Here the critical temperature, strength coupling and photons energy are assumed to be affected dramatically on the rate of photons emission of state interaction c, which can form gluon possible structures and photon emission state. The decreased photons emission yields with increased strength couple of quarks reaction due to increase critical temperature from 113 MeV to 130 MeV were predicted. We
... Show MoreFingerprints are commonly utilized as a key technique and for personal recognition and in identification systems for personal security affairs. The most widely used fingerprint systems utilizing the distribution of minutiae points for fingerprint matching and representation. These techniques become unsuccessful when partial fingerprint images are capture, or the finger ridges suffer from lot of cuts or injuries or skin sickness. This paper suggests a fingerprint recognition technique which utilizes the local features for fingerprint representation and matching. The adopted local features have determined using Haar wavelet subbands. The system was tested experimentally using FVC2004 databases, which consists of four datasets, each set holds
... Show MoreBackground: Energy drinks are non alcoholic beverages which contain stimulant drugs chiefly caffeine and marketed as mental and physical stimulators. Consumption of energy drinks is popular practice among college students as they are exposed to academic stress. Caffeine which is the main constituent of energy drinks could become an addictive substance or cause intoxication. Objectives: This study aims to assess the prevalence of energy drinks consumption among medical students of alkindy college of Medicine.Type of the study: A cross sectional study.Methods: It was performed at alkindy medical college on March 2016. A total number of 600 students were contacted to participate in this study. A self administered questionnaire was used to c
... Show MoreNano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show More