Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreA reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti
... Show MoreThe current research aims to develop the skills of the kindergarten students in designing and implementing a theater for gauntlets made of cardboard materials. To study this, the researcher determined to build teaching plans for design and implementation skills according to (Kolb model).
The results of this research showed the effectiveness of teaching plans according to (Kolb's model) in developing skills of design and implementation (theater for gauntlets made of cardboard materials) for the students of the Kindergarten Department - the experimental group. Which had a positive effect to reach the desired results in the design and implementation of the gauntlet theater and dealing with cardboard materials
Granular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .
The operation and management of water resources projects have direct and significant effects on the optimum use of water. Artificial intelligence techniques are a new tool used to help in making optimized decisions, based on knowledge bases in the planning, implementation, operation and management of projects as well as controlling flowing water quantities to prevent flooding and storage of excess water and use it during drought.
In this research, an Expert System was designed for operating and managing the system of AthTharthar Lake (ESSTAR). It was applied for all expected conditions of flow, including the cases of drought, normal flow, and during floods. Moreover, the cases of hypothetical op
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show More