Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreA total of 200 clinical samples included Burns and Wounds infections were collected from Baghdad Governorate. Results showed that rate all isolates of P. mirabilis was 31(15.5%) and rate of Burns infections was 14 (45%) and rate of wounds infection 17 (55%). Where was diagnostic based on conventional biochemical tests and confirmed by the Vitek-2 Compact system and the specific primer of the16SrRNA gene, the ability of bacterial isolates to biofilm formation to be studied. It's considered an important virulence factor in Incidence of diseases and play important role in increasing resistance to antibiotic of encased bacteria, by two methods Congo Red Agar method and Microtiter Plate method. The Congo Red Agar method showed that most isolates
... Show MoreThe goal of this research to identify the effect of the probing questions in the collection of material literature with students of the Kurdish language department, to achieve the aim of the research, the researcher has chosen a sample from the students of third stage of the Kurdish language Department, Faculty of Education / Ibn Rushd as a field for the application of experiment.The number of sample reached (71) students divided into two groups represented two divisions of the experimental groups under study to the style of questions sounding by (35) students, and represented the other division of the control group, which studied in the way normal and by (36) students, as rewarded r
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.