Preferred Language
Articles
/
0hinJ5gBVTCNdQwCQrkX
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.

Crossref
View Publication
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Evaluation of Ultrasonography in the Diagnosis of Acute Appendicitis with Histopathology as Gold Standard
...Show More Authors

Background: Acute appendicitis is the most common surgical abdominal emergency with a life time prevalence of 1 to 7 individuals. Because the clinical diagnosis of acute appendicitis remains a challenge to surgeons, so different aids were introduced like different scoring systems, computer aided programs, ultrasonography, computerized tomography, Magnetic resonance imaging, Gastrointestinal tract contrast studies and laparoscopy to improve the diagnostic accuracy.

Objective: To evaluate ultrasound in the diagnosis of acute appendicitis in those patients clinically diagnosed with histopathology as gold standard.

Methods: A cross sectional study carried in Al-kindy Teaching

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
5th International Conference On Energy Aware Computing Systems & Applications
Area efficient test circuit for library standard cell qualification
...Show More Authors

High cost of qualifying library standard cells on silicon wafer limits the number of test circuits on the test chip. This paper proposes a technique to share common load circuits among test circuits to reduce the silicon area. By enabling the load sharing, number of transistors for the common load can be reduced significantly. Results show up to 80% reduction in silicon area due to load area reduction.

View Publication
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Pilot Based Channel Estimation and Synchronization in OFDM System
...Show More Authors

Channel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
A Scoping Study on Lightweight Cryptography Reviews in IoT
...Show More Authors

The efforts in designing and developing lightweight cryptography (LWC) started a decade ago. Many scholarly studies in literature report the enhancement of conventional cryptographic algorithms and the development of new algorithms. This significant number of studies resulted in the rise of many review studies on LWC in IoT. Due to the vast number of review studies on LWC in IoT, it is not known what the studies cover and how extensive the review studies are. Therefore, this article aimed to bridge the gap in the review studies by conducting a systematic scoping study. It analyzed the existing review articles on LWC in IoT to discover the extensiveness of the reviews and the topics covered. The results of the study suggested that many re

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Formulate a strategy to manage tax compliance risks: An applied research in the General commission for Taxes
...Show More Authors

  This research discussed and analyzed the formulation of a strategy to manage tax compliance risks, as an applied research in the General commission for Taxes. The questionnaire was used as a research tool to identify the factors that stimulate or retard the research sample from being compliant. The K-means clustering method was also used to enable the classification of the research sample's views into four behaviors, some of these views pose tax-compliance risks. The research concluded that risk management is a continuous process and that all departments of the General commission for Taxes are responsible for its implementation to enable them to deal with the behavior of the taxpayer towards tax compliance. And it recommended

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (19)
Crossref (9)
Scopus Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Ieee Transactions On Circuits And Systems I: Regular Papers
Crosstalk-Aware Multiple Error Detection Scheme Based on Two-Dimensional Parities for Energy Efficient Network on Chip
...Show More Authors

Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o

... Show More
View Publication
Scopus (25)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Aug 27 2021
Journal Name
Human Interaction, Emerging Technologies And Future Systems V: Proceedings Of The 5th International Virtual Conference On Human Interaction And Emerging Technologies, Ihiet 2021, August 27-29, 2021 And The 6th Ihiet: Future Systems (ihiet-fs 2021), October 28-30, 2021, France
Electricity Consumption Forecasting in Iraq with Artificial Neural Network
...Show More Authors

Scopus (15)
Scopus
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
System Identification Algorithm for Systems with Interval Coefficients
...Show More Authors

In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.

View Publication Preview PDF
Crossref