The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
This research aims to demonstrate the impact of the going concern assumption in different accounting applications to provide a realistic look and more accurate result of activity and financial situation, as well as determining the responsibility of the Company's administration in compliance with the going concern assumption during the preparation for their financial statements, and to clarify the concept of integration between internal audit and external audit about going concern assumption, besides its importance and usefulness on the work of both of the internal auditor and the external auditor, as well as on the company under auditing process.This research purports preparing an internal audit program, including a set of auditing actio
... Show MoreThe PET scans provide images that pinpoint the anatomic location of abnormal metabolic activity within the body. A radionuclide suitable for labeling a wide range of radiopharmaceuticals for positron emission tomography imaging is used also for local therapy of tumors. Among the possible methods for cyclotron production of radionuclide used in PET. We investigate the proton irradiation to produce the standard radionuclide (15O, 11C,1 3N, 18F) and some non-standard Radionuclide (76Br,124I,60Cu,66Ga,86Y and 89Zr). The total integral yield based on the main published and approved experimental results of excitation functions were calculated.
Never the less, banking compliance function became one of the most important functions in banking sector according to its characteristics that considered as an interior control tools to control (executive management, departments, subsidiaries…etc) in any bank; and their compliance towards applying rules, recommendations and legislations. In addition to, estimating the risks and limited them; and controlling the anti-money laundering. Thus, these functions that covered the main concept of (Banking Compliance) would avoid the bank to be under the control of any sanctions.
This research Sought to Determine the Relationship and impact between the tax knowledge in dimensions of the tax compliance costs (monetary costs, time costs, psychic costs) Since the sample included 81 individuals represented by the Executive directors and Financial and Accountant working in the Joint-stock company, A questionnaire was used as a tool for data collection and its analysis. For the purpose of analyzing the research data the statistical package for social science, SPSS. The most important tools used in the statistical analysis are:(standard deviation, and simple linear regression, percentages, arithmetic mean, Cronbach's alpha, F-test, T- Test). The research found a weakness attenti
... Show MoreEstimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show More