IAU
Radio Astronoy
Astronomy
Radio Astronomy Lab. Mathematical Modeling Mathematical Modeling Lab. Computer Skills Lab
Solar hydrogen line emission has been observed at the frequency of 1.42 GHz (21 cm wavelength) with 3m radio telescope installed inside the University of Baghdad campus. Several measurements related to the sun have been conducted and computed from the radio telescope spectrometer. These measurements cover the solar brightness temperature, antenna temperature, solar radio flux, and the antenna gain of the radio telescope. The results demonstrate that the maximum antenna temperature, solar brightness temperature, and solar flux density are found to be 970 K, 49600K, and 70 SFU respectively. These results show perfect correlation with recent published studies.
Radio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreThe aim of this paper is to measure the characteristics properties of 3 m radio telescope that installed inside Baghdad University campus. The measurements of this study cover some of the fundamental parameters at 1.42 GHz. These parameters concentrated principally on, the system noise temperature, signal to noise ratio and sensitivity, half power beam width, aperture efficiency, and effective area. These parameters are estimated via different radio sources observation like Cas-A, full moon, sky background, and solar drift scan observations. From the results of these observations, these parameters are found to be approximately 64 K, 1.2, 0.9 Jansky, 3.7°, 0.54, and 3.8 m2 respectively. The parameters values have vital affect to quantitativ
... Show MoreThe research involves examining the influence of partial solar eclipse on the strength of neutral hydrogen from the Sun. Baghdad University Radio Telescope (BURT) was used to monitor the partial solar eclipse on the 25th of October, 2022. Radio observations from the Sun were recorded from 11:30 AM to 03:36 PM. This means that the HI emission from the Sun was recorded before, during and after the event. It was noticed, that at the moment of maximum eclipse, ~ 46% of the Sun’s disk was covered by the Moon. For the purpose of this research, the solar radio wave intensity was monitored and the solar flux density was determined at different times, i.e. before, during and after the partial solar eclipse. The obtained results showed that
... Show MoreThe paper presents an overview of theoretical aspects of small radio telescope antenna parameters. The basic parameters include antenna beamwidth, antenna gain, aperture efficiency, and antenna temperature. These parameters should be carefully studied since they have vital effects on astronomical radio observations. The simulations of antenna parameters were carried out to assess the capability and the efficiency of small radio telescopes to observe a point source at a specific frequency. Two-dimensional numerical simulations of a uniform circular aperture antenna are implemented at different radii. The small diameter values are chosen to be varied between (1-10) m. This study focuses on a small radio telescope with a diameter of 3 m sin
... Show MoreIn this paper, a computer simulation is implemented to generate of an optical aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and spherical Zernike aberrations were simulated in a subroutine using MATLAB function and applied as a phase error in the aperture function of an imaging system. The studying demonstrated that the Point Spread Function (PSF) and Modulation Transfer Function (MTF) have been affected by these optical aberrations. Areas under MTF for different radii of the aperture of imaging system have been computed to assess the quality and efficiency of optical imaging systems. Phase conjugation of these types aberration has been utilized in order to correct a distorted wavefront. The results showed that
... Show MoreNumerical simulations are carried out to investigate the possibility of observing
extrasolar planet nearby star via optical telescopes. Several techniques are
considered in this study in order to quantitatively assess their quality in suppressing
the wings of the point spread function of optical telescope of a reference star. The
optical telescope with circular Gaussian shape aperture reveals extrasolar planet
even with contrast ratio 10-7 while the square Gaussian shape aperture reveals the
planet with 10-5.
Numerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.
In this paper a two dimensional numerical simulation have been applied using
MATLAB program for generating Fraunhofer diffraction pattern from different
apertures. This pattern is applied for three types of apertures, including, circular,
square, and rectangular functions, and it's could be generated any wavelength in the
visible light. The studying demonstrated the capability and the efficiency of optical
imaging systems to observe a point source at very long distance. The circular
aperture shows better results across the shape of Fraunhofer pattern and optical
transfer function (otf). Also, the minimum values of the normalized irradiance of
different diffracted apertures have been computed at different dimension
Two-dimensional computer simulations are carried out to demonstrate the
essential features of observing extrasolar planet nearby star. It has been shown that
the wings of the point spread function of the optical telescope play an important rule
in suppressing the features that related to the planet. The planet lies beneath these
wings and the final image that recorded by an optical telescope looks like a star.
Quantitative assessment of observing planet nearby star at different relative
brightness and separation are demonstrated in this study.