
Shireen is an assistant professor at the Department of Mathematics, University of Baghdad. She received a Doctor of Philosophy in Applied Mathematics\Dynamical Systems from Brunel University London in 2018. Her research interest is focused on Applied Nonlinear Dynamics
Ph.D. in Applied Mathematics from Brunel University London.
Nonlinear Dynamics, Mathematical Modelling, Modeling and Simulation, Stability analysis, Bifurcation theory.
Applied Mathematics-Dynamical systems
Numerical analysis, Complex analysis, Probability theory, Chaos theory, Partial differential equations, Finite mathematics, Calculus, Advanced Calculus. Matlab.Numerical analysis, Dynamical systems
12 M.Sc. students 3 Ph.D. students
In this paper, the interplay among four population species is offered. The system consists of two competitive prey, predator and super predators. The application of the hypothesis of the Sotomayor theorem for local bifurcation around every equilibrium point is adopted. It is detected that the transcritical bifurcation could occur near most of the system's equilibrium points, while saddle-node and pitchfork bifurcation can not be accrued at any of them. Further, the conditions that guarantee the accruing Hopf bifurcation are carried out. Finally, some numerical analysis is illustrated to confirm the analytical results.
This paper treats the interactions among four population species. The system includes one mutuality prey, one harvested prey and two predators. The four species interaction can be described as a food chain, where the first prey helps the second harvested prey. The first and the second predator attack the first and the second prey, respectively, according to Lotka-Volterra type functional responses. The model is formulated using differential equations. One equilibrium point of the model is found and analysed to reveal a threshold that will allow the coexistence of all species. All other equilibrium points of the system are located, with their local and global stability being assessed. To back up the conclusions of the mathema
... Show MoreDyspepsia is a significant public health issue that affects the entire world population. In this work, we formulate and analyze a deterministic model for the population dynamics of Gut bacteria in the presence of antibiotics and Probiotic supplements. All the possible equilibria and their local stability are obtained. The global stability around the positive equilibrium point is established. Numerical simulations back up our analytical findings and show the temporal dynamics of gut microorganisms.
The interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values
... Show MoreIn this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreThe interplay of species in a polluted environment is one of the most critical aspects of the ecosystem. This paper explores the dynamics of the two-species Lokta–Volterra competition model. According to the type I functional response, one species is affected by environmental pollution. Whilst the other degrades the toxin according to the type II functional response. All equilibrium points of the system are located, with their local and global stability being assessed. A numerical simulation examination is carried out to confirm the theoretical results. These results illustrate that competition and pollution can significantly change the coexistence and extinction of each species.
In this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreThis study presents a mathematical model describing the interaction of gut bacteria in the participation of probiotics and antibiotics, assuming that some good bacteria become harmful through mutations due to antibiotic exposure. The qualitative analysis exposes twelve equilibrium points, such as a good-bacteria equilibrium, a bad-bacteria equilibrium, and a coexisting endemic equilibrium in which both bacteria exist while being exposed to antibiotics. The theory of the Sotomayor theorem is applied to study the local bifurcation around all possible equilibrium points. It’s noticed that the transcritical and saddle-node bifurcation could occur near some of the system’s equilibrium points, while pitchfork bifurcation cannot be accrued at
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreDissolved oxygen, phytoplankton, and zooplankton populations represent the basis of the proposed mathematical model designed to investigate the impact of the depletion of dissolved oxygen in the plankton ecosystem. The dynamic analysis of the model is devoted to locating all possible equilibrium points. The analysis demonstrates that three equilibrium positions are possible. The existence of the Hopf-bifurcation for the interior equilibrium is investigated using the phytoplankton's photosynthesis-produced oxygen rate as the bifurcation parameter. Conditions for stable limit cycles are obtained. In conclusion, a numerical simulation is shown as evidence to support the analytic results.
In this work, we have developed a model that describes the relationships between top predators (such as tigers, hyenas, and others), crop raiders (such as baboons, warthogs, and deer), and prey (such as deer) in the coffee forests of southwest Ethiopia. Various potential equilibrium points are identified. Additionally, the model's stability in the vicinity of these equilibrium points is examined. An investigation of the model's Hopf bifurcation is conducted concerning several significant parameters. It is found that prey species may be extinct due to a lower growth rate and consumption by top predators in the absence of human interference in the carrying capacity of prey. It is observed that top predators may be extinct due to human interfe
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the speed at which breast cancer cells multiply and the immune system’s response model is necessary to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction of cancer and immunity. The proposed model is precisely described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish four equilibrium positions. The stability analys
... Show MoreGlobal warming has a serious impact on the survival of organisms. Very few studies have considered the effect of global warming as a mathematical model. The effect of global warming on the carrying capacity of prey and predators has not been studied before. In this article, an ecological model describing the relationship between prey and predator and the effect of global warming on the carrying capacity of prey was studied. Moreover, the wind speed was considered an influencing factor in the predation process after developing the function that describes it. From a biological perspective, the nonnegativity and uniform bounded of all solutions for the model are proven. The existence of equilibria for the model and its local stability is inves
... Show More