In this paper, we discussed and studied the temperature effect on the electronic transfer rate of N3 dye contact with zinc sulfide (ZnS) semiconductor based on a quantum transition theory for electronic transfer from N3 dye to ZnS. In this system, the energy levels of the heterojunction N3/ZnS are device surrounded by many solvents
In this work, the rate of charge transfer (CT) reaction at the N3-ZnS interface was calculated using a quantitative computational model to evaluate the efficiency of N3-ZnS heterojunction dye-sensitized solar cell devices using different types of solvents. This work discussed the influence of the effective driving energy force on the charge transport rate and performance of N3-ZnS devices with various solvents based on a donor-acceptor model. A solar cell model was used to study the optical efficiency when changing some of its parameters, such as the type of material and the thickness of the film, as they are important factors influencing the quality of the solar cell. It was found that the transition energy varies with different so
... Show MoreIn this paper, the effect of temperature on the charge transfer rate of dye (N3) in contact with ZnS semiconductors is discussed and studied when electrons move from the excited N3 dye to the conduction band of ZnS based on quantum shift theory. In a heterogeneous system, the energy levels are assumed to be continuous, and the N3-ZnS system is surrounded by a variety of polar solvent media. The transition energy of the N3/ZnS heterojunction was calculated using seven different solvents at room temperature, considering the refractive index and dielectric constant of the solvents and the ZnS semiconductor, respectively. The charge-transport reaction rate was calculated over different te