He graduated from the University of Baghdad with B.Sc.,M.Sc. and PhD in Geochemistry.He currently is an academic staff in the University of Baghdad.His interesting topics are Geochemistry ,Hydrogeochemistry,Soil Geochemistry,Hydrogeology and Environmental studies.
Assistant Professor of Geochemistry (Ph.D.)
Geochemistry Hydrogeochemistry Hydrogeology Environmental Geochemistry Soil Geochemistry Water Pollution
Baghdad, Iraq
Geochemistry Hydrogeochemistry Water Pollution
6 M.Sc
Since oil is the primary source of vanadium in the environment and crude oil has a correspondingly high percentage of vanadium. Vanadium is crucial as a sign of oil contamination. Twenty soil samples were taken from various locations surrounding the East Baghdad oil field in Iraq during February 2022 and then analyzed to determine the effects of industrialization along with urbanization-related pollutants. The soil samples were analyzed using spectrophotometry analysis. In soil samples taken from the research area, vanadium concentrations range from (0.26 to 1.2 ppm). The contamination (CF), geoaccumulation (Igeo) and Enrichment factors (EF) indicated that all the soil samples are uncontaminated.
This study aims to detect cadmium accumulation in the soil of Baghdad. Twenty soil samples were collected randomly during November 2020 to cover the study area, emphasizing the nature of each area (agricultural, commercial, industrial, residential, roadside, and waste dumping sites). All soil samples were subjected to geochemical analysis using atomic absorption spectrometry (ASS) to determine the concentration of cadmium in Baghdad soil. The laboratory data was utilized to design the spatial analysis map using Arc GIS 10.4.1 to investigate the spatial distribution of cadmium. The results demonstrated that the total content of cadmium in the study area ranged from 0.121to 1.78 mg/kg. All results of cadmium concentrations are withi
... Show MoreSoil acts as a last sink for elements that people release into the environment through a range of activities due to its physiochemical characteristics. These substances, whether are organic or mineral pollutants, accumulate in the soil and constitute a significant risk to the ecosystem in general because they mess with the chemical and physical equilibrium of the soil, get into the food chain, and eventually get to people. When pollutant concentrations during the bioaccumulated process exceed the global standards for what is regarded as a contaminant in water, air, and soil. Nine soil samples were collected from different sites and two samples from each site at two depths (0-20 and 20-40 cm) to determine if there were any
... Show MoreThe present study aims to study the content and spatial distribution of lead (Pb) contamination in the soils of some Baghdad cities (Middle of Iraq). Twenty soil samples were randomly collected from different land-use in the studied area at a depth between 5 to 30 cm. Ten samples are collected from Al-Rissafa side areas (Adhamiya, Al-Wazeeria (Battery Manufacturer), Shikh Omer, Ziyouna, Karada, Shaab, Sadr city, Al-Za’franiya, Al-Dora expressway, and Alselikh ) and other ten samples are collected from Al-Krakh side areas Al-Dora, Al-Masafi junction, Al-Dora, Sayidia, Al-Salam university college, Al-Bayaa (Industrial District), Jehad, Amirya, Abu Ghraib, Al-hurriya, and Kadhimiya. The soil samples have been analyzed for the lead (P
... Show MoreThis hydrochemical study of the surface and groundwater in Khan AL-Baghdadi area, western Iraq, included the interpretation of physical, chemical, and biological properties. Water samples were collected from wells (14 samples) and surface water of Euphrates River (6 samples) for the dry and wet periods of October 2018 and April 2019, respectively. The stable isotopes analysis was performed for the dry period only. The surface water samples were characterized by slightly alkaline, fresh, excessively mineralized, Ca-chloride type, and hard to very hard water class. While the groundwater samples were characterized by slightly alkaline, brackish, excessively mineralized, Ca-chloride and Na-Chloride type, and hard to very hard wat
... Show MoreThe hydrochemical study of the surface and groundwater in Khan AL-Baghdadi area included interpretation of physical, chemical and biological properties of 14 wells and 6 surface water samples collected from Euphrates River.. The study covered two periods representing dry and wet periods in October 2018 and April 2019, respectively. The surface water samples were characterized as slightly alkaline, fresh water, excessively mineralized, calcium-chloride type, and hard to very hard class. While the groundwater samples were characterized as slightly alkaline, brackish water, excessively mineralized, calcium-chloride and sodium-chloride type, and hard to very hard class. The assessment of water for irrigation purposes for bo
... Show MoreThe quality of groundwater in the Al-Hawija area was assessed using a water quality index. Data of nine physico-chemical parameters of 28 groundwater wells were used to calculate the water quality index (WQI). A heterogeneous water quality was reported, where in close proximity to the Lesser Zab River (LZR), it has low WQI values and permissible for human consumptions due to the dilution processes by fresh water; whereas, it becomes deteriorated in areas located far away the river. The values of WQI ranges from 22 to 336, indicating a good to very poor groundwater quality.
The Qazaniyah study included the analysis of 18 wells and 2 springs for the dry period in October 2018 and the wet period in April 2019, including the analysis of physical and chemical properties and the study of heavy elements (Fe, Zn, Cd, Pb, Ni and Cu).The results showed that the water wells and springs for the two periods are highly mineralized and characterized by low alkalinity and very high hardness. Water was fresh in some wells and salty in the others, whereas it was fresh in the springs. Most of the wells had sodium chloride type, except the wells 12, 7, 6, and 5 which were of Calcium chloride type. The springs for both seasons had calcium chloride type. Based on the World Health Organization criteria , all the well
... Show MoreGroundwater modelling is particularly challenging in arid regions where limited water recharge is available. A fault zone will add a significant challenge to the modelling process. The Western Desert in Iraq has been chosen to implement the modelling concept and calculate the model sensitivity to the changes in aquifer hydraulic properties and calibration by researching 102 observations and irrigation wells. MODFLOW-NWT, which is a Newtonian formulation for MODFLOW-2005 approaches, have been used in this study. Further, the simulation run has been implemented using the Upstream-Weighting package (UPW) to treat the dry cells. The results show sensitivity to the change of the Kx value for the major groundwater discharge flow. Only abo
... Show MoreDevastated by the combined impact of massive drainage works and upstream damming since the 1980's, Al-Hammar Marsh, Southern Iraq, has completely collapsed with 94 % of its land cover transformed into bare land and salt crusts by 2000. After a policy initiated to restore the Iraqi marshes again in 2003, the marsh recovered about half of its former area. As a part of the ecological recovery assessment of this newly inundated marsh, it is important to investigate the extend impact of desiccation after 3 years of inundation on water quality as the latter plays an important role in the restoration process of the marshes. Therefore, from a restoration point of view, major and trace element distribution and sourcing as well as seasonal variati
... Show MoreThis study focuses on cation and anion concentrations and their distribution in the Dibdibba aquifer in the Zubair area at Basra city, southern Iraq to assess the groundwater quality for the agricultural purpose. The physicochemical properties (TSS, Ec, pH, cation and anion concentrations) of the groundwater samples through
18 wells was measured. Results showed that the dominant groundwater type is Na, Mg, Ca-Chloride type. The Magnesium Hazard, Sodium Adsorption Ratio, Na%, total dissolved solid, Electrical conductivity and pH were used to assess the suitability of groundwater for irrigation purposes.. The assessment results indicate that the groundwater is characterized by no Mg-harmful, excellent