Ph.D. in nuclear physics
Teaching Staff
IAU Member
Nuclear physics, stellar physics, Nuclear astrophysics
nuclear physics Stellar Physics
Thermonuclear reaction rates are calculated for three oxygen isotopes 14,15,16O in CNO cycles reactions occurring in red giant stars. These reactions are:, , , , and . Reaction rates have been calculated using Matlab codes, and related comparisons were made with NACRE II and Reaclib libraries, and the ratios of production to the destruction of 15,16O isotopes were found. Present reaction rate results were close to most of the selected reactions, and in some cases larger with a factor of 1-3. 15,16O production to destruction ratios indicated a special tendency to saturate at temperatures higher than ~ 2 GK, and these ratios were in general larger than 1 indicating an excess of producing such isotopes in re
... Show MoreAt thermal energies near stellar conditions, nuclear reactions are sensitive to resonance strengths of the nuclear reaction cross-section. In this paper, the resonance strengths of nuclear reaction were evaluated numerically by means of nuclear reaction rate calculations using a written Matlab code, at the energies of interest in stellar nuclear reactions. The results were compared with standard reaction before and after application of a statistical analyses, to select the best parameters that made theoretical results as close as possible to the standard values. Fitting was made for different temperature ranges up to 10 GK, 0.6 GK and 0.25 GK. The evaluated results showed that as the temperature range becomes narrower, more error is ad
... Show MoreThere are many neutron sources in the universe that play an important role in the stellar slow neutron capture (s-process) nucleosynthesis. Fluorine-19 is a cosmically rare isotope that is generated in a series of reactions. The aim in this paper is to perform theoretical calculations to test the variance of neutron intensity generated within stellar conditions, especially in Asymptotic Giant Branch (AGB) stars, on the production of 19F isotope. EMPIRE II program has been utilized with the aid of many Matlab programs, and experimental comparisons have been made with NACRE II and Reaclib libraries. The results has shown that the high abundances of reactant nuclei responsible for ultimately generating
... Show MoreBoth 13C 16O and 22Ne 25Mg reactions perform a cosmic role in the production of neutrons in AGB stars, which significantly contributes to the nucleosynthesis via the s-process. The astrophysical S-factor for both reactions is calculated in this research, utilizing EMPIRE code and depending on two parameter sets for the optical potential. These datasets were published earlier by McFadden and Satchler (denoted here as MFS) and Avrigeanu and Hodgson (denoted as AH) for the non-resonant region of the spectrum and over a temperature range of . The extrapolated S-factor at zero energy is derived to be and for 13C 16O, while the values were and fo
... Show MoreInitially-produced isotopes during the course of the
Light isotopes, especially closed shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, 12C(p, γ) 13N and 14N(p, γ) 15O reactions have been calculated by means of Matlab codes to find the reaction rate across a temperature range of 0.006 to 10 GK using non-resonant parts, as well as the astrophysical S- factor S(E) at low energies. It was concluded that the high binding energy of 12C and 14N nuclei make the reaction less probable thus enabling other competitive processes to develop, which enhances the probability of other competitive proton reactions in the CNO cycle.