Introduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro. Materials and Methods: The GFP gene was inserted to a NDV strain to create a recombinant NDV (rNDV- GFP) using reverse genetics technology. The MTT assay was used in evaluating the oncolytic effect of rNDV- GFP on the lung carcinoma NCI-H727 cells. Light and fluorescent microscopy was used to study the cytopathic effects of rNDV-GFP. Results: MTT assay showed that rNDV-GPF inhibited the NCI-H727 tumor cell death in a time-dependent manner. A significant inhibitory effect (78.3%) for rNDV-GPF on cancer cells was observed at 96h in comparison to rNDV (22.7%) and the cytotoxicity rate was directly proportional to the MOI used. Microscopic studies showed rNDV-GPF to induce cytopathic effect post 24 h of infection. Conclusion: The GFP-expressing recombinant NDV strains exhibited encouraging results in terms of tumor growth inhibition. Our research set the groundwork for employing recombinant NDV as an anticancer viral vector.
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Locking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)
Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
Background: Oral squamous cell carcinoma (OSCC) is the most prevalent malignant neoplasm of the oral cavity and constitutes a major health problem in developing. In the last 30 years, the 5-year survival rate of patients with oral SCC has not improved despite advance in diagnostic techniques. To improve early diagnosis for this deadly disease, new biological markers are needed. HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. HOX gene expression has been described in several adult tissues, where they performed important roles in maintaining homeostasis. Few studies have suggested that HOXA1 plays a role in tumorigenesis. Besides bein
... Show MoreLocking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show More