The formation of a Schiff-base with N2O2 donor atoms derived from the hydrazine segment and its metal complexes are reported. The Schiff-base ligand; N’-((1R,2S,4R,5S,Z)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)furan-2-carbohydrazide (HL) was prepared from the reaction of furan-2-carbohydrazide with (1R, 2R, 4R, 5S)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (M1) in ethanol medium. The reaction of the title ligand with selected metal ions Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) gave complexes with the general formula [M(L)Cl2], (where: M = Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II)). Spectroscopic analyses Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) Carbon-13 nuclear magnetic resonance (1H- and 13C-NMR), mass and electronic spectroscopy and atomic absorption) along with elemental microanalysis (C.H.N), chloride percentage, conductivity measurements, magnetic moments and melting point were used to establish the identity of ligand and complexes. The biological activity of the synthesized compounds towards bacterial strains (G+ and G-) was investigated.
This research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using thr
... Show MoreThis paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5- dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio was found to be (1:1). The adsorption of cobalt complex was carried out
... Show More(phen) (L(M [formula general a with complexes ligand-mixed new of series A methods analyses different by characterised and synthesised been have ,ligand arysecond as phenanthroline1,10- = phen and ligand primary as dithiocarbamate-1-azolebenzoimid-H-1)sulfinyl)methyl)yl-”-2pyriden)trifluroethoxy2,2,2- “(-4-methyl3-(((2-Sodium = L,ZnIIandCdII,CuII,NiII,CoII= M where,Cl)]phen)(L(Pd [Cland]2)O2H( ligands to metal ,moments magnetic and ,elementalanalysis ,spectrum mass ,surementsmea conductivity ,analysis thermal ,spectroscopy Vis-UV ,IR-FT ,NMR-C,13 H1 such dithiocarbamate the with formed coordination anisobidentate that showed spectra IRFT The.)phen:dithiocarbamate:M) (1:1:1(be to found been has complexes all in ratio nitrogen th
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show Moreوفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنف
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes.
Four metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes. Keywords: Mixed ligand complexes, spectral studies, 2-aminophenol, tributylphosphine.