The formation of a Schiff-base with N2O2 donor atoms derived from the hydrazine segment and its metal complexes are reported. The Schiff-base ligand; N’-((1R,2S,4R,5S,Z)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)furan-2-carbohydrazide (HL) was prepared from the reaction of furan-2-carbohydrazide with (1R, 2R, 4R, 5S)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (M1) in ethanol medium. The reaction of the title ligand with selected metal ions Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) gave complexes with the general formula [M(L)Cl2], (where: M = Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II)). Spectroscopic analyses Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) Carbon-13 nuclear magnetic resonance (1H- and 13C-NMR), mass and electronic spectroscopy and atomic absorption) along with elemental microanalysis (C.H.N), chloride percentage, conductivity measurements, magnetic moments and melting point were used to establish the identity of ligand and complexes. The biological activity of the synthesized compounds towards bacterial strains (G+ and G-) was investigated.
Zerumbone is a well-known compound having anti-cancer, anti-ulcer, anti-inflammatory and anti-hyperglycemic effects. During its use for the disease treatment, the membrane of erythrocyte can be affected by consumption of this bioactive compound. The current study was the first report of investigation of the hemolytic activities on human erythrocytes and cytotoxic profile of zerumbone. The toxicity of zerumbone on human erythrocytes was determined by in vitro hemolytic assay. Brine shrimp lethality assay was used to evaluate the cytotoxic effect of zerumbone at concentrations 10, 100 and 1000 μg/mL. The human erythrocyte test showed no significant toxicity at low concentrations, whereas hemolytic effect was amplified up to 17.5 % at
... Show MoreZerumbone is a well-known compound having anti-cancer, anti-ulcer, anti-inflammatory and anti-hyperglycemic effects. During its use for the disease treatment, the membrane of erythrocyte can be affected by consumption of this bioactive compound. The current study was the first report of investigation of the hemolytic activities on human erythrocytes and cytotoxic profile of zerumbone. The toxicity of zerumbone on human erythrocytes was determined by in vitro hemolytic assay. Brine shrimp lethality assay was used to evaluate the cytotoxic effect of zerumbone at concentrations 10, 100 and 1000 μg/mL. The human erythrocyte test showed no significant toxicity at low concentrations, whereas hemolytic effect was amplified up to 17.5
... Show MoreThe medicinal plants (Astragalus species) have been used traditionally as anti-inflammatory, antioxidant, and Anti-diabetics. The current research investigates the phytochemistry and some biological activity of methanol extract of different parts of Astragalus bruguieri Bioss., a wild medicinal plant grows on Safeen mountain, Erbil, Iraq. The methanol extracts of A. bruguieri were analyzed for total phenolic, flavonoid, and saponin contents. In-vitro antioxidant activity was analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Furthermore, the plant extracts were examined for in-vitro enzyme inhibitory activity and in-v
... Show MoreThe aim of study to evaluated cinnamic acid and its activity on complete blood count(RBC,WBC,HG,HCV,MCH,MCHC and Plat.)and removed the cytoxan damage which caused bone marrow failure and leukemia and other that due to linked the cytoxan in 7- nitrogen of guanine based of DNA that lead to dead cells. Two concentration from pure cinnamic acid (5.6, 2.8 mg ? mice weight) in first step to choice the perfect concentration in comparison with each negative control ,positive control of cytoxan and the comparison group represent vitamin C. The second step to understand cinnamic acid mechanism activity towards cytoxan by used pre- cytoxan and post – cytoxan in interaction with perfect concentration of cinnamic acid dose (2.8 mg ? mice we
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show MoreObjective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show MoreObjective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show More