General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k dataset demonstrate superior performance compared to traditional methods, achieving higher accuracy, faster processing speed, and improved boundary preservation. Novelty: The proposed model effectively combines deep learning with fusion techniques, enhancing matting quality while maintaining robustness across various environmental conditions. Implications: These findings highlight the potential of integrating fusion techniques with deep learning for image matting, offering valuable insights for future research in automated image processing applications, including augmented reality, gaming, and interactive video technologies. Highlights: Better Precision: Fusion techniques enhance fine detail preservation. Faster Processing: Lightweight U-Net improves speed and accuracy. Wide Applications: Useful for AR, gaming, and video processing. Keywords: Deep image matting, computer vision, deep learning, fusion techniques, U-Net
One of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues
... Show MoreDigital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
Learn new methods of teaching mathematics contribute to raising the level of pupils to acquire mathematical concepts primary stage
Attempt advancement in the level of mathematics teaching for the better through the use of modern teaching strategies. The research aims at the progress in the acquisition of mathematical concepts schoolgirls after subjecting the fourth grade to teach in active learning strategies, the number of research sample (60) schoolgirl, by (30) schoolgirl experimental group and 30 pupils of the control group. Clear from the results shown the presence of a statistically significant difference between the acquisition of concepts of schoolgirls two groups (experimental and control) for the benefit of pupils of the exp
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More