This work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivity and magnetic susceptibility. The structure of these complexes showed tetrahedral geometry. The study of antimicrobial activity using inhibition method for the ligands (HL* ), (A) and their complexes [ML*A].
This research includes synthesis of new heterocyclic derivatives of N-benzyl-5-bromoisatin. New 1, 2, 4-triazole, oxazoline and thiazoline derivatives of [N-benzyl-5-bromo-3-(Ethyliminoacetate)-indole-2-one] (2) have been synthesized. The preparation process started by the reaction of 5-bromoisatin with sodium hydride in dimethylformamide (DMF) at 0°C, gave suspension of sodium salt of 5-bromoisatin and subsequent reaction with benzylchloride to give N-benzyl-5-bromoisatin (1). Compound (1) reacted with ethylglycinate (Schiff base) obtained the intermediate compound (2) which reacted with different reagents in two ways. The first way, compound (2) reacted with (hydrazine hydrate, semicarbazide, phenylsemicarbazide and thiosemicarbazide)
... Show MoreAll new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show MoreTwo new ligands Na2[ H3B (BDIA)].0.05H2O (L1)(BDIA = 1-Boranyl-2,3-
Dihydro-1H-Indol-3-yl)]Acetic Acid and Na3[H2B(BDIA)2].0.3H2O.0.3CH3Ph (L2)
were synthesized by reaction of NaBH4 with indole -3- acetic acid (IAA) . The
coordination properties of ligands were studied with Co(II) , Ni(II) , Cu(II) and
Pt(IV) ions. Characterization and structural aspects of the prepared compounds were
elucidated by 1HNMR, FTIR electronic spectra, magnetic susceptibility, elemental
and metal analysis, thermal analysis (TG & DTG) and conductivity measurements.
The obtained data for metal complexes suggested square planar geometry for
copper complexes, octahedral geometry for nickel and platinium complexes and
tetrahedral geom
New schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.
ABSTRACT. 4-Sulfosalicylic acid (SSA) was used as a ligand to prepare new triphenyltin and dimethyl-tin complexes by condensation with the corresponding organotin chloride salts. The complexes were identified by different techniques, such as infrared spectra (tin and proton), magnetic resonance, and elemental analyses. The 119Sn-NMR was studied to determine the prepared complexes' geometrical shape. Two methods examined the antioxidant activity of (SSA) and prepared complexes; Free radical scavenging activity (DPPH) and CUPRRAC methods. Tri and di-tin complexes gave high percentage inhibition than ligands with both methods due to tin moiety; the triphenyltin carboxylate complex was the best compared with the others. Also, antibacter
... Show MoreA new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar const
... Show MoreCharge transfer in styryl dyes STQ-1, STQ-2,and STQ-3 with organic media system has been studied theoretically depending on the Franck- Condon rule and continuum dielectric model . The reorientation energies (eV) were evaluated theoretically depending on dipole momentum, dielectric constant , and refrective index n. The rate constant of charge transfer has been calculated depending on the reorientation energy (eV) ,effective free energy , potential height barrier , and coupling coefficient . A matlap program has been written to calculated the rate constant of charge transfer and other parameter. The results of calculations show that STQ-2 dye is more reaction for charge transfer compare with STQ-1 and STQ-3 dyes
4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid was synthesized from multisteps and converted to their corresponding hydrazide. The corresponding hydrazide was cyclized to their corresponding 5-amino-1,3,4-oxadizole. Newly Schiff bases (7a-7e) were synthesized from reaction the 5-amino-1,3,4-oxadizole with several substituted of 4-hydroxybenzylaldehyde. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the synthesized compounds. Compound 7d and 7e exhibited significant free-radical scavenging ability in both assays.