To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multiple RS datasets to overcome limitations and produce comparatively detailed outcomes. However, there are still knowledge gaps in examining the effectiveness of these RS approaches in enhancing the detection of archaeological remains/areas. Thus, this review paper is likely to deliver valuable comprehension for archaeological studies to fill knowledge gaps and further advance exploration of archaeological areas/features using RS along with DL approaches.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Data of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreGenome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreBlogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.
There is a natural problem raised by the issue of media performance. As a separate activity and express its own capabilities. This problem can be framed in the form of a question: Is media performance merely a reflection of the activity of other sectors of society, especially political and economic, and what links them to other societal sectors of interrelated relations? Is the media limited to mere transfer, or is it an industry with its own mechanisms and rules? The answer may seem somewhat complicated if we handle media with research and study in general, but the issue may be less complicated when it comes to Arab media, because its data may add another setback to the overall Arab setbacks.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b