To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multiple RS datasets to overcome limitations and produce comparatively detailed outcomes. However, there are still knowledge gaps in examining the effectiveness of these RS approaches in enhancing the detection of archaeological remains/areas. Thus, this review paper is likely to deliver valuable comprehension for archaeological studies to fill knowledge gaps and further advance exploration of archaeological areas/features using RS along with DL approaches.
The aim of the study is the assessment of changes in the land cover within Mosul City in the north of Iraq using Geographic Information Systems (GIS) and remote sensing techniques during the period (2014-2018). Satellite images of the Landsat 8 on this period have been selected to classify images in order to measure normalized difference vegetation index (NDVI) to assess land cover changes within Mosul City. The results indicated that the vegetative distribution ratio in 2014 is 4.98% of the total area under study, decreased to 4.77% in 2015 and then decreased to 4.54
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The past several years have seen an increase in awareness of the pervasiveness of medications as pollutants in the aquatic environment. The main reason for concern regarding the release of pharmaceuticals into the environment is the possibility that biological agents may become opposing to them. The development of precise and reliable analytical techniques for pharmaceutical determination in a range of samples is necessary for their safe use in the pharmaceutical industry and medical treatments. This review offers a summary of chromatographic techniques for identifying and quantifying the examination of pharmaceuticals in a range of environmental samples. Both the general public and the scientific community are currently very intere
... Show MoreDue to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
The purpose of this study was to find out the connection between the water parameters that were examined in the laboratory and the water index acquired from the examination of the satellite image of the study area. This was accomplished by analysing the Landsat-8 satellite picture results as well as the geographic information system (GIS). The primary goal of this study is to develop a model for the chemical and physical characteristics of the Al-Abbasia River in Al-Najaf Al-Ashraf Governorate. The water parameters employed in this investigation are as follows: (PH, EC, TDS, TSS, Na, Mg, K, SO4, Cl, and NO3). To collect the samples, ten sampling locations were identified, and the satellite image was obtained on the
... Show MoreThis study investigates the changes occurring in the province of Basra using geospatial methods and analyzes the variations in land surface temperature among the various types of land cover. For the months of July and December in the years 2013 and 2021, Landsat images were used in Landsat 8 OLI/TIRS, and satellite images were processed using ArcGIS 10.8 software. The study's categories for land use and land cover were generated through the application of supervised classification techniques, and the land surface temperature was calculated using data from a satellite sensor's brightness temperature. According to the study's findings, there has been an increase in urban areas (including barren land). From 2013 to 2021, a greater correlati
... Show More