Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreThe differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree
... Show MoreThis paper aims at analyzing Terry Bisson’s short story Bears Discover Fire stylistically by following both Gerard Genette’s theory of narratology (1980) and Short and Leech (1981) strategy for analyzing fictional works. Also trying to examine to what extent these models are applicable in analyzing the selected story. Stylistic analysis procedures help the readers/researchers to identify specific linguistic features in order to support literary interpretation and appreciation of literary texts. Style in fiction concentrates not on what is written, but on how a text is written. Each writer has his own style and techniques which distinguish him from other writers
Face Identification system is an active research area in these years. However, the accuracy and its dependency in real life systems are still questionable. Earlier research in face identification systems demonstrated that LBP based face recognition systems are preferred than others and give adequate accuracy. It is robust against illumination changes and considered as a high-speed algorithm. Performance metrics for such systems are calculated from time delay and accuracy. This paper introduces an improved face recognition system that is build using C++ programming language with the help of OpenCV library. Accuracy can be increased if a filter or combinations of filters are applied to the images. The accuracy increases from 95.5% (without ap
... Show MoreThis study presents a linguistic analysis of how Russian and American mainstream media and official statements deployed speech acts of accusation during the 2022 Russian invasion of Ukraine. Using Speech Act Theory (Austin, 1962; Searle, 1976) as the framework. The study analyzes 50 texts of English-language official statements and media headlines from both sides. In this research utterances are categorized into assertives, expressives, directives, commissives, and declarations, and analyzes their pragmatic force in shaping narratives. The analysis reveals contrasts in tone and rhetorical strategy: U.S. officials and media overwhelmingly use assertive accusations and expressive condemnations to morally indict Russia, while Russian counterpa
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreBackground/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreThis Study is Concerned with (the debate of democracy in the modern islamic political thought ) which discovers the attitudes and this trend of thought so-called democracy . Therefore this study is divided into three sections : the first section is concerned with the democracy in extremist Islamic speech, the second section tackles appropriation of democracy in moderate Islamic speech , while the third section is concerned with the democracy in Aistighrabi Islamic speech . Finally the conclusion sums up the findings of the study
Proverbs gain their importance not only from the fact that they represent a cultural record of the people of every nation, but they reveal the way they use language and how they exploit their environments as a good source of inspiration to enrich that language. Domestic animals, as part of every environment, play a major role in composing proverbs in every nation.
This study is an attempt to pragmastylistically analyse some selected English and Iraqi rural proverbs using domestic animals in their texts. It limits itself to investigate certain stylistic and pragmatic devices such as: the type of sentences, their lengths, their content and grammatical words, the part of speech used, metaph
... Show More