The present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment lengths. To simulate genuine fire disasters, the nine beams were exposed to high-temperature flames for one hour along with the control specimens. The selected temperatures were 300°C (572°F), 500°C (932°F), and 700°C (1292°F) as recommended by the standard fire curve (ASTM–E119). The specimens were cooled gradually at ambient laboratory conditions. The performance of the prestressed segmental concrete beams through the burning process was described with regard to the beams camber, spalling, and occurred deterioration.
Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreWarm asphalt mixture (WMA) and reclaimed asphalt pavement (RAP) are the most memorable sustainable materials in world of asphalt concrete pavements . This research aims to study the warm asphalt mixture for different types of filler materials such as ordinary cement and limestone dust. Beside, this research focused on the test of emulsified asphalt properties by evaluating the performance of warm asphalt mixture by Marshall Stability properties as well as moisture sensitivity. The results of this experiment provided many important points. First, The cationic emulsified asphalt is suitable with RAP aggregate for production warm asphalt mixtures .Second, The effective mixing procedure for warm asphalt mixtures consists hea
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreIn this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreEnvironmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show More