Pharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series of experiments were conducted at constant mixing speed (300 revolutions per minute) to evaluate the effect of experimental factors likes, adsorption time, pH of diclofenac solution, diclofenac initial concentration, and dosage of activated carbon on removal efficiency. The design of experiments (version 13 Stat-Ease) was implemented using the central composite method to define the optimum effect of the process factors on the removal efficiency. The analysis of variance showed that the quadratic model for the experiment was significant with a very low probability value (P- value < 0.0001). The adjusted R2 of the model was 0.9826 and the predicted R2 was 0.9574. Whereas the optimum conditions suggested by the model for the process variable were found to be 150 min, 3.25 pH, 30 mg/L, 0.267g, for adsorption time, pH of diclofenac solution, diclofenac initial concentration, a dosage of activated carbon, respectively and the maximum removal efficiency was found to be 94.6%. The data obtained from the experiments were fitted with Langmuir and Freundlich models and the results show that the data was well fitted Langmuir model with R2 = 0.9685 as compared to the Freundlich model which has R2 = 0.93249. Likewise, the data was analyzed by pseudo first and second-order kinetic models and the results show that the adsorption on apricot-activated carbon was well adequate with the pseudo-second-order model.
Study of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreThe main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones
In this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant imp
... Show MorePotentiostatic polarization and weight loss methods have been used to investigate the corrosion behavior of carbon steel in sodium chloride solution at different concentrations (0.1, 0.4 and 0.6) M under the influence of temperatures ( 293, 298, 303, 308 and 313) K. The inhibition efficiency of the amoxicillin drug on carbon steel in 0.6 M NaCl has also been studied based on concentration and temperature. The corrosion rate showed that all salt concentrations ( NaCl solution) resulted in corrosion of carbon steel in varying ratio and 0.6 M of salt solution was the highest rate (50.46 g/m².d). The results also indicate that the rate of corrosion increases at a temperature of 313 K.. Potentiodynamic polarization studi
... Show MoreIn the present work, the surface properties of mixed binary surfactants containing sodium dodecylbenzene sulfate (SDBS) and Tween 80 (TW80) surfactants in aqueous solutions were studied at temperature 293 K using surface tension measurements. The critical micelle concentration (cmc) magnitude for both individual surfactants and their mixtures were established the obtained results revealed that the magnitude of cmc of the mixtures are less than the magnitude of individual surfactants and decrease with the increase in Tween 80 percent in solution which indicate the nonideal mixing of the two surfactants. The values of molecular interaction parameters and the mole fraction of surfactants in the micelle (X1) were calculated
... Show MoreThe current standard for treating pilonidal sinus (PNS) is surgical intervention with excision of the sinus. Recurrence of PNS can be controlled with good hygiene and regular shaving of the natal cleft, laser treatment is a useful adjunct to prevent recurrence. Carbon dioxide (CO2) laser is a gold standard of soft tissue surgical laser due to its wavelength (10600 nm) thin depth (0.03mm) and collateral thermal zone (150mic).It effectively seals blood vessels, lymphatic, and nerve endings, Moreover wound is rendered sterile by effect of laser. Aim of this study was to apply and assess the clinical usefulness of CO2 10600nm laser in pilonidal sinus excision and decrease chance of recurrence. Design: For 10 patients, between 18 and 39 year
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show More