Roller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required
This research examines the impact of cornering on the aerodynamic forces and stability of a Nissan Versa (Almera) passenger sedan car by introducing novel modifications. These modifications included single inverted wings with end plates as a front spoiler, double‐element inverted wings with end plates as a rear spoiler, and incorporating the ground as a diffuser under the car trunk. The goal is to enhance the performance and stability of conventional passenger cars. To ensure the accuracy of the numerical data, the study utilized multiple methodologies to model the turbulence model, ultimately selecting the most suitable option. This involved comparing numerical data with wind tunnel experimental d
This work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP) and the coefficient of performance (COP) are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.
As the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetric
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show MoreDevelopment and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreIn this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show MoreIron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .
A localized stenosis or aneurysm is a discontinuity that presents the pulse wave produced by the contracting heart with a reflection site. However, neither wave speed ( c) in these discontinuities nor the size of reflection in relation to the size of the discontinuity has been adequately studied before. Therefore, the aim of this work is to study the propagation of waves traversing flexible tubes in the presence of aneurysm and stenosis in vitro. We manufactured different sized four stenosis and four aneurysm silicone sections, connected one at a time to a flexible ‘mother’ tube, at the inlet of which a single semi-sinusoidal wave was generated. Pressure and velocity were measured simultaneously 25 cm downstream the inlet of th
... Show More