Water produced from power plants is one of the most important sources of water pollution, especially for areas like Baghdad, Contaminated industrial wastewater is a major environmental challenge due to the rapid growth of industries, leading to increased accumulation of harmful pollutants in water resources, the work is intended to study the impact of water generated from a power plant in the south on the level of heavy metals before and after the treatment process and after its discharge to the Tigris River. Objective is to determine the extent of heavy metals such as iron, copper, chromium, and zinc concentration in water extracted from various points and subsequently study the monthly variations of these elements with a view to assessment of water quality and efficiency of the treatment systems. Description: Water samples were collected from pre-treatment, post-treatment, and post-discharge points to the Tigris River. Measurements were carried out on a monthly basis for six months. The preparation of samples was done by filtration and preservation techniques by adding nitric acid. Results are showed that iron concentration reached its peak value of 1.70 mg/L in November 2021, while the minimum value of 0.10 mg/L was recorded in the month of October. Temporal variation: there is variation in metals on a monthly basis; for instance, zinc ranged from 0.40 mg/L during January to 2.70 mg/L during November. Standard comparison: the result was also checked against allowable values given by the World Health Organization and the Environmental Protection Agency to determine the level at which water meets the environmental standards. Heavy metal concentrations varied significantly before and after treatment, indicating unit efficiency. Iron, copper, chromium, and zinc showed reductions, though some exceeded limits, posing environmental risks. Future monitoring and improved treatment are essential to safeguard public health and the Tigris River's ecosystem. © 2025 The authors.
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MoreObjective: To compare two positioning approaches in the surgical treatment of unstable intertrochanteric femoral fractures fixed by proximal femoral nailing, the supine versus lateral decubitus position Methodology: This randomized prospective comparative study on 26 patients with unstable intertrochanteric fractures was carried out from January 2020 and June 2022. We randomly divided patients into two groups: group A (13 patients) were operated using the traction table in the supine position for implant insertion, and group B (13 patients) were operated using the lateral decubitus position. We compared both groups regarding the setup time, operative time, tip-to-apex distance, collodiaphyseal angle, time for fluoroscopic time expo
... Show MoreThis study was designed to compare the effect of two types of viral hepatitis A and E (HAV
and HEV) on liver functions in Iraqi individuals by the measurement of biochemical changes
associated with hepatitis.
The study performed on 58 HEV and 66 HAV infected patients compared with 28 healthy
subjects. The measured biochemical tests include total serum bilirubin, serum transminases (ALT
and AST) alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT).
The study showed that adolescent and young adults (17-29) years, were mostly affected by
HEV while children (5-12) years were frequently affected by HAV. The severity of liver damage in
HEV patients was higher than HAV patients as a result of high serum transa
<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MorePreparation of identical independent photons is the core of many quantum applications such as entanglement swapping and entangling process. In this work, Hong-Ou-Mandel experiment was performed to evaluate the degree of indistinguishability between independent photons generated from two independent weak coherent sources working at 640 nm. The visibility was 46%, close to the theoretical limit of 50%. The implemented setup can be adopted in quantum key distribution experiments carried out with free space as the channel link, as all the devices and components used are operative in the visible range of the electromagnetic spectrum.
<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MoreThe paper presents the design of a system consisting of a solar panel with Single Input/Multiple Outputs (DC-DC) Buck Converter by using Simulink dialogue box tools in MATLAB software package for simulation the system. Maximum Power Point Tracking (MPPT) technique depending on Perturb and Observe (P&O) algorithm is used to control the output power of the converter and increase the efficiency of the system. The characteristics of the MSX-60 PV module is chosen in design of the system, whereas the electrical characteristics (P-V, I-V and P-I curves) for the module are achieved, that is affected by the solar radiation and temperature variations. The proposed design module has been found to be stable for any change in atmospheric tempera
... Show MoreThis paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on