Remote sensing data are increasingly being used in digital archaeology for the potential non-invasive detection of archaeological remains. The purpose of this research is to evaluate the capability of standalone (LiDAR and aerial photogrammetry) and integration/fusion remote sensing approaches in improving the prospecting and interpretation of archaeological remains in Cahokia’s Grand Plaza. Cahokia Mounds is an ancient area; it was the largest settlement of the Mississippian culture located in southwestern Illinois, USA. There are a limited number of studies combining LiDAR and aerial photogrammetry to extract archaeological features. This article, therefore, combines LiDAR with photogrammetric data to create new datasets and investigate whether the new data can enhance the detection of archaeological/ demolished structures in comparison to the standalone approaches. The investigations are implemented based on the hillshade, gradient, and sky view factor visual analysis techniques, which have various merits in revealing topographic features. The outcomes of this research illustrate that combining data derived from different sources can not only confirm the detection of remains but can also reveal more remains than standalone approaches. This study demonstrates that the use of combination remote sensing approaches provides archaeologists with another powerful tool for site analysis.
In the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreThis study has three parts, the first one is the synthesis of a novel Schiff bases by the condensation of guanine or 9-[{2-hydroxyethoxy}methyl]-9H-guanine with variety aldehydes to yield four different bases as follows: (E)-2-((4-nitrobenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S1), (E)-2-((4-methoxybenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S2), (E)-2-((2-hydroxybenzylidene) amino)-9-((2-hydroxy ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (S3), and (E)-2-(((9-((2-hydroxy ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)imino)methyl)benzoic acid (S4). Then, spectroscopic analyses such as Elemental Analysis, UV/VIS, Mass spectra, FTIR, 1H,13C-NMR were made to recognize these bases. In the second part, the ability of synthesized bases to
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MorePeer-Reviewed Journal
Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and tape
... Show MoreThin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreThin films of In2O3-CdO at various CdO contents (0.01, 0.02, 0.03, 0.04 and 0.05) were deposited on transparent substrate which is glass using chemical spray pyrolysis deposition method at substrate temperature 150oC. The structural properties was studied to characterize the prepared materials by XRD analysis. Surface morphology has been illustrated using scanning electron microscopy which proved the nanosize of prepared materials. This materials have been used as gas sensor for toxic gas which is hydrogen sulfide H2S. The sensitivity and response speed have been investigated with addition of CdO nanoparticles. © 2021, S.C. Virtual Company of Phisics S.R.L. All rights reserved.