In this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature of 860 ° C. The structural properties were studied using X-ray diffraction for all samples, and the results showed that the samples have tetragonal structure and the change of the parameters structure with the change of the barium concentration. Full Width Half Maximum (FWHM) was calculated by Orange Pro using X-RAY data. The crystal size was calculated using Scherrer and Willeamson-Heall methods, where the results showed that the crystal size, compliance and degree of crystallinity changed with the change of barium concentration, and the highest average for the crystal size was 70.0271nm at x=0, and crystallization at 61.46% at x=0.6, and the strain decreased to 0.0037 when barium concentration equals 0.4.
Cadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present w
... Show MoreIn this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
Abstract
These experiments seek to investigate the effects of the fixed variations to the basic box plot on subjects' judgments of the box lengths. The study consists of two experiments, were constructed as an extension to the experiments carried out previously by Hussin, M.M. (1989, 2006). Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box length and also varying with respect to other elements such as, box width or whisker length. When he (1989) suggested in the future research points (1, 2), the changing length of the st
... Show MoreA synthesis series of new heterocyclic derivatives (A2-A7) (pyrrole, pyridazine, oxazine and imidazol) derived from 4-acetyl-2,5-dichloro-1-(3,5-dinitrophenyl)-1H-pyrrole-3-carboxylate(A1) have been synthesised. Synthesis of compound (A2) by the reaction of starting material (A1) with hydroxyl amine hydrochloride in the presence of pyridine. Compound (A2) was reacted with hydrazine hydrate in dry benzene to give (A3) derivative. The compound )A3( deals with sodium nitrite to give diazonium salt, and the reaction diazonium salt with ethyl acetoacetate to produce compound (A4). To a mixture of compound (A4) and hydroxyl amine with sttired to yield (A5).Compound (A6) was prepared by reaction compound (A4) with thiosemicarbazide in presence
... Show MoreOur work included a synthesis of three new imine derivatives—1,3-thiazinan-4-one, 1,3-oxazinan-6-one and 1,3-oxazepin-4,7-dione—which contained an adamantyl fragment. These were produced via the condensation of the Schiff`s base (E)-N-(adamantan-1-yl)-1-(3-aryl)methanimine with 3-mercaptopropanoic acid; 3-chloropropanoic acid; and maleic, citraconic anhydride, respectively. These new imines were prepared via the condensation of adamantan-1-ylamine and 3-nitro-, 3-bromobenzaldehyde in n-BuOH. We obtained a good yield of products. FTIR, 1H NMR spectroscopy and C.H.N.S analysis were used to diagnostic the products. The molecular structure of (E)-N-(adamantan-1-yl
... Show MoreIn this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).