<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>
The study aims to identify the degree of implementation of the coronavirus prevention standards (covid-19) in the kingdom of Saudi Arabia and compare it with the families of intellectual disabilities. The study population consisted of all families residing in the Kingdom of Saudi Arabia. To achieve the objectives of the research, the analytical descriptive approach was employed. The study sample consisted of (372) families, among them (84) families with intellectual disabilities, and (288) families without intellectual disabilities. They were chosen from the Saudi community according to what is available for collection in a simple random way, using the standard criteria for the prevention of coronavirus (Covid- 19) Prepared by the resear
... Show MoreThis work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreAbstract: -
The concept of joint integration of important concepts in macroeconomic application, the idea of cointegration is due to the Granger (1981), and he explained it in detail in Granger and Engle in Econometrica (1987). The introduction of the joint analysis of integration in econometrics in the mid-eighties of the last century, is one of the most important developments in the experimental method for modeling, and the advantage is simply the account and use it only needs to familiarize them selves with ordinary least squares.
Cointegration seen relations equilibrium time series in the long run, even if it contained all the sequences on t
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreImage processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it
... Show More