Preferred Language
Articles
/
z2FVHpkBdMdGkNqjEhN-
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated using precision, sensitivity, specificity, accuracy, and F-measure to classify CXR images into COVID-19, non-COVID-19 lung opacity, and normal control. Results showed a precision of 92.91%, sensitivity of 90.6, specificity of 96.45%, accuracy of 90.6%, and F-measure of 91.74% in COVID-19 detection. Indeed, the suggested MobileNetV2 deep-learning CNN model can improve classification performance by minimising the time required to collect per-image results for a mobile application.

Scopus Crossref
View Publication
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Studying the Effect of COVID-19 on Liver Enzymes and Lipid Profile in Iraqi Recovering Patients
...Show More Authors

  The Covid-19 virus disease has been shown to affect numerous organs and systems including the liver. The study aimed to compare lipid profiles and liver enzyme levels in individuals who had recovered from Covid-19 infection. To achieve the study objectives, liver Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline phosphatase (ALP),  Random Blood Sugar (RBS) and Lipid profile which include cholesterol, High-Density Lipoprotein (HDL), Triglycerides (T.G), Low-Density Lipoprotein (LDL), and Very low-density Lipoprotein (VLDL) were determined.

One hundred twenty serum samples were obtained, of which fifty samples were utilized as the control healthy persons (not affected by COVID) and seventy samples came f

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Sep 15 2021
Journal Name
Journal Of Baghdad College Of Dentistry
Prevalence of viral co-infection among COVID-19 cases in association disease severity and oral hygiene
...Show More Authors

Background: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Process Safety And Environmental Protection
Safety and health management response to COVID-19 in the construction industry: A perspective of fieldworkers
...Show More Authors

View Publication
Scopus (54)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Science Progress
Impact of COVID-19 on the prevalence of oral and maxillofacial disorders: A retrospective cohort study
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Apr 13 2021
Journal Name
Latin American Journal Of Pharmacy
The Experience with Hospitalized COVID-19 Patients in Al-Basra, Iraq: Predictors of the disease severity
...Show More Authors

SUMMARY. The objectives of the present study were to assess the possible predictors of COVID-19 severity and duration of hospitalization and to identify the possible correlation between patient parameters, disease severity and duration of hospitalization. The study included retrospective medical record extraction of previous coron avirus COVID-19 patients in Basra hospitals, Iraq from March 1st and May 31st, 2020. The information of the participants was investigated anonymously. All the patients’ characteristics, treatments, vital signs and laboratory tests (hematological, renal and liver function tests) were collected. The analysis was conducted using the SPSS (version 22, USA). Spearman correlation was used to measure the relations

... Show More
Scopus (1)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (534)
Crossref (527)
Scopus Clarivate Crossref
Publication Date
Tue Oct 19 2021
Journal Name
Big Data Summit 2: Hpc & Ai Empowering Data Analytics 2018 | Conference Paper
Deep Bayesian for Opinion-target identification
...Show More Authors

The use of deep learning.

View Publication
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Use of learning methods for gender and age classification based on front shot face images
...Show More Authors