Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated using precision, sensitivity, specificity, accuracy, and F-measure to classify CXR images into COVID-19, non-COVID-19 lung opacity, and normal control. Results showed a precision of 92.91%, sensitivity of 90.6, specificity of 96.45%, accuracy of 90.6%, and F-measure of 91.74% in COVID-19 detection. Indeed, the suggested MobileNetV2 deep-learning CNN model can improve classification performance by minimising the time required to collect per-image results for a mobile application.
Background Numerous studies indicated that workers in the health sector suffer from work stress, hassles, and mental health problems associated with COVID-19, which negatively affect the completion of their job tasks. These studies pointed out the need to search for mechanisms that enable workers to cope with job stress effectively. Objectives This study investigated psychological flow, mental immunity, and job performance levels among the mental health workforce in Saudi Arabia. It also tried to reveal the psychological flow (PF) and mental immunity (MI) predictability of job performance (JP). Method A correlational survey design was employed. The study sample consisted of 120 mental health care practitioners (therapists, psychologists, co
... Show MoreAbstract Objective: To identify correlation of elevated LDH & CRP levels with the outcomes of COVID-19. Methodology: The cross-sectional retrospective study consisted of 200 COVID-19 patients who presented at a private clinical in Baghdad, Iraq. It was carried out from February 2021 to February 2022. Data included age, gender and clinical presentation. Blood samples were taken for high sensitivity CRP and LDH in the serum. Results: Out of 200 patients, 50 were critical and 150 severe according to clinical features. LDH and CRP showed a significant increase (p=0.000) in critical patients. This group involved admission to the respiratory intensive care unit requiring mechanical ventilation than in patients with severe COVID-19 (760.5±6.3 vs.
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection
... Show More