The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations increased and flux decreased with increase in feed concentrations from 10 to 300 mg/l. Raising of pressure from 1 to 4 bar, permeate concentration decreased for RO, for NF decreased and then increased at high pressure and increase the flux. The rises of flow rate from 20 to 50 l/h decreased permeate concentration and the flux increase. The rises of temperature from 26 to 40 °C, increased permeate concentration and increased the flux. The rise in pH from 4 to 7, decreased the flux as the pH goes from acidic side towards alkaline. The polyamide nanofiltration membrane had allowed permeation of chromium and copper ions to lower than permissible limits. Nanofiltration membrane had allowed permeation of nickel and zinc ions at low concentration of these ions. The polyamide RO membrane gave a high efficiency for removal of chromium, copper, nickel and zinc and it had allowed permeation of these ions to the lower than permissible limits. The rejection at first three minutes when the feed concentration approximately was constant for chromium in NF and RO, was 99.7% and 99.93%, for copper was 98.43% and 99.33%, for zinc was 97.96% and 99.49%, and for nickel was 97.18% and 99.49% respectively. The maximum recovery for chromium in NF and RO was 71.75% and 48.5%, for copper was 75.62% and 50.68%, for zinc was 80.87% and 54.56%, for nickel was 60.06% and 46.18% respectively. For a mixture of synthetic electroplating wastewater, nanofiltration and reverse osmosis membranes have a high rejection percentage for heavy metal ions. It was obtained pure water and concentrations of less than allowable limits for heavy metals in the case of the mixture.
Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show MoreThis study investigates the phonological adaptation of diphthongs within English loanwords in Iraqi Arabic (IA). In contrast to earlier small-scale descriptive studies, this study used quantitative content analysis to analyse 346 established loanwords collected through document review and direct observation to determine the diphthong adaptation patterns involved in the nativisation of English loanwords by native speakers of IA. Content analysis results revealed that most GB diphthong adaptations in English loanwords in IA occur in systematic patterns and thus may be ascribed to particular aspects in both L1 and L2 phonological systems. More specifically, the results indicate that the IA output forms tend to maintain the features of the GB i
... Show MoreCutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and
... Show MoreStatement of the Problem. The use of orthodontic fixed appliances may adversely affect oral health leading to demineralizing lesions and the development of gingival problems. Aims of the Study. The study aimed to coat orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles (CHX-HMP NPs) and to evaluate the elusion of CHX from CHX-HMP NPs. Materials and Methods. A solution of CHX-HMP nanoparticles with an overall concentration of 5 mM for both CHX and HMP was prepared, characterized (using atomic force microscope and Fourier transformation infrared spectroscopy), and used to coat orthodontic stainless steel (SSW) and NiTi archwires (NiTiW). The coated segments were characterized (using scanning electron microscopy
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show More