The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations increased and flux decreased with increase in feed concentrations from 10 to 300 mg/l. Raising of pressure from 1 to 4 bar, permeate concentration decreased for RO, for NF decreased and then increased at high pressure and increase the flux. The rises of flow rate from 20 to 50 l/h decreased permeate concentration and the flux increase. The rises of temperature from 26 to 40 °C, increased permeate concentration and increased the flux. The rise in pH from 4 to 7, decreased the flux as the pH goes from acidic side towards alkaline. The polyamide nanofiltration membrane had allowed permeation of chromium and copper ions to lower than permissible limits. Nanofiltration membrane had allowed permeation of nickel and zinc ions at low concentration of these ions. The polyamide RO membrane gave a high efficiency for removal of chromium, copper, nickel and zinc and it had allowed permeation of these ions to the lower than permissible limits. The rejection at first three minutes when the feed concentration approximately was constant for chromium in NF and RO, was 99.7% and 99.93%, for copper was 98.43% and 99.33%, for zinc was 97.96% and 99.49%, and for nickel was 97.18% and 99.49% respectively. The maximum recovery for chromium in NF and RO was 71.75% and 48.5%, for copper was 75.62% and 50.68%, for zinc was 80.87% and 54.56%, for nickel was 60.06% and 46.18% respectively. For a mixture of synthetic electroplating wastewater, nanofiltration and reverse osmosis membranes have a high rejection percentage for heavy metal ions. It was obtained pure water and concentrations of less than allowable limits for heavy metals in the case of the mixture.
Quantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreSiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show MoreMetaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char
... Show MoreThe main aim of this study is to assess the performance and residual strength of post-fire non-prismatic reinforced concrete beams (NPRC) with and without openings. To do this, nine beams were cast and divided into three major groupings. These groups were classified based on the degrees of heating exposure temperature chosen (ambient, 400, and 700°C), with each group containing three non-prismatic beams (solid, 8 trapezoidal openings, and 8 circular openings). Experimentally, given the same beam geometry, increasing burning temperature caused degradation in NPRC beams, which was reflected in increased mid-span deflection throughout the fire exposure period and also residual deflectio
The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
