The present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8% in 120 min) under solar light with a remarkable Langmuir–Hinshelwood pseudo-first-order degradation rate of 0.0183 and 0.0151 min−1, respectively, under optimum conditions of pH 5, dye concentration of 25 mg/L, TiO2/XG concentration of 25 mg/L, H2O2 concentration of 400 mg/L, and reaction time of 120 min. The improved photocatalytic ability was ascribed to the impact of TiO2/XG nanoparticles with a high surface area, and lower band gap energy. Solar light energy has significant potential for addressing energy deficit and water pollution concerns.
There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to so
... Show MoreArrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.
Background: Coated archwires have been introduced to improve esthetics during orthodontic treatment. Theaim of the present study was to evaluate and compare the load–deflection characteristics and force levels of six brands of coated nickel titanium orthodontic archwires using palatal and gingival deflection. Materials and methods: Ten round wires (0.016 inch) and ten rectangular wires (0.019x0.025 inch) were obtained from each of six brands (G&H, Opal, Ortho Technology, Dany, Hubit and Astar Companies). The load-deflection properties of these archwires were evaluated by the modified bending test usinga readymade dental arch model in both palatal and gingival directions at 37°C temperature using a universal material testing machi
... Show MoreThis article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs
... Show MoreIn solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational
... Show MoreIn this paper, we have examined the effectiveness exchange of optical vorticity via three-wave mixing (TWM) technique in a four-level quantum dot (QD) molecule by means of the electron tunneling effect. Our analytical analysis demonstrates that the TWM procedure can result in the production of a new weak signal beam that may be absorbed or amplified within the QD molecule. We have taken into account the electron tunneling as well as the relative phase of the applied lights to assess the absorption and dispersion characteristics of the newly generated light. We have discovered that the slow light propagation and signal amplification can be achieved. Our results show that the exchange o