Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this research, need confirm the results of the preliminary study but also going forward in understanding the processes involved in these experiments. Two tracks are followed, first will concern with the development of classifiers based on statistical data already provided by the system "eye tracking", second will be more focused on finding new descriptors from the eye trajectories. In this paper, study used K-mean with Vector Measure Constructor Method (VMCM). In addition, briefly reflect used other method support vector machine (SVM) technique. The methods are playing important role to classify the people with and without autism specter disorder. The research paper is comparative study between these two methods.
The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreDoppler broadening of the 511 keV positron annihilation ??? ? was used to estimate the concentration of defects ?? different deformation levels of pure alnminum samples. These samples were compressed at room temperature to 15, 22, 28, 38,40, and 75 % thickness reduction. The two-state ^sitron-trapping model has been employed. 'I he s and w lineshape parameters were measured using high-resolution gamma spectrometer with high pure germanium detector of 2.1 keV resolution at 1.33 MeV of 60Co. The change of defects concentration (Co) with the deformation level (e) is found to obey an empirical formula of the form Cd - A £ B where A and ? are positive constants that depend mainly on the deformation procedure and the temperature at which the def
... Show Moreفي السنوات الأخيرة، أدى التقدم التكنولوجي في إنترنت الأشياء (IoT) وأجهزة الاستشعار الذكية إلى فتح اتجاهات جديدة وإعطاء حلول عملية في مختلف قطاعات الحياة. يتم التعرف على إنترنت الأشياء كتنولوجيا حديثة تربط بين مختلف انواع الشبكات. تم تحسين أنواع مختلفة من قطاعات الرعاية الصحية في المجال الطبي بناءً على هذه التكنولوجيا. أحد هذه القطاعات الهامة هو نظام مراقبة الصحة (HMS). تعتبر مراقبة المريض عن بعد لاسلكيًا وبت
... Show MoreDue to the development that occurs in the technologies of information system many techniques was introduced and played important role in the connection between machines and peoples through internet, also it used to control and monitor of machines, these technologies called cloud computing and Internet of Things. With the replacement of computing resources with manufacturing resources cloud computing named converted into cloud manufacturing.
In this research cloud computing was used in the field of manufacturing to automate the process of selecting G-Code that Computer Numerical Control machine work it, this process was applied by the using of this machine with Radio Frequency Identification and a AWS Cloud services and some of py
... Show MoreThis study aims to identify changes in vegetation cover and its impact on the climate of Mosul City. The analytical method of the study relies on changes in Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST); GIS technology was used to measure these statistics. Landsat (5,8) imagery was used to detect the change in vegetation cover change and land surface temperature during the study period from 2010 to 2022, where the unsupervised classification technique was used to determine LU variations. The results revealed significant changes among the LU classes during the study period, primarily due to human activities. The most prominent change in LU was the urban expansion of agricultural
... Show MoreIn the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means
... Show MoreThis paper deals with the design and implementation of an ECG system. The proposed system gives a new concept of ECG signal manipulation, storing, and editing. It consists mainly of hardware circuits and the related software. The hardware includes the circuits of ECG signals capturing, and system interfaces. The software is written using Visual Basic languages, to perform the task of identification of the ECG signal. The main advantage of the system is to provide a reported ECG recording on a personal computer, so that it can be stored and processed at any time as required. This system was tested for different ECG signals, some of them are abnormal and the other is normal, and the results show that the system has a good quality of diagno
... Show MoreAl-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized Difference Vegetation Index (NDVI), Geographic Information Systems(GIS), and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, th
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that