Preferred Language
Articles
/
yRfjSZABVTCNdQwCWIXM
Classification and monitoring of autism using svm and vmcm
...Show More Authors

Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this research, need confirm the results of the preliminary study but also going forward in understanding the processes involved in these experiments. Two tracks are followed, first will concern with the development of classifiers based on statistical data already provided by the system "eye tracking", second will be more focused on finding new descriptors from the eye trajectories. In this paper, study used K-mean with Vector Measure Constructor Method (VMCM). In addition, briefly reflect used other method support vector machine (SVM) technique. The methods are playing important role to classify the people with and without autism specter disorder. The research paper is comparative study between these two methods.

Scopus
Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Public key system by using isomorphism group
...Show More Authors

In this paper we deal with the problem of ciphering and useful from group isomorphism for construct public key cipher system, Where construction 1-EL- Gamal Algorithm. 2- key- exchange Algorithm

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Plant Archives
Schistosomiasis vector control using cucumis melo plantextractswithbioassayexperiment
...Show More Authors

he aim of this study is to get a plant extracts to use it as molluscicides to control the snail vector of Schistosomiasis andfinely control the disease. Laboratory study was performed to compare the molluscicidal activity of leaves and stems extractsof Cucumis melo against Bulinus truncatus snail. The snail B. truncatus was exposed to a serial concentrations of leaves andstems extracts (4000ppm, 5000ppm) in this work. Different effects of the extracts to the snail B. truncatus were recorded.These effects includes death, escaping and imbalance of snail behavior. 96hr-LD50 values of leaves extracts were calculatedfor the doses 4000 and 5000ppm as (76 and 37%) respectively while for stems were (105 and 47%) respectively. We found thatthe snail

... Show More
View Publication
Scopus
Publication Date
Tue Jan 29 2019
Journal Name
Journal Of The College Of Education For Women
Object Filling Using Table Based Boundary Tracking
...Show More Authors

The feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Fuzzy-assignment Model by Using Linguistic Variables
...Show More Authors

      This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network
...Show More Authors

Image Fusion Using A Convolutional Neural Network

Publication Date
Sat Aug 01 2020
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Text hiding in text using invisible character
...Show More Authors

Steganography can be defined as the art and science of hiding information in the data that could be read by computer. This science cannot recognize stego-cover and the original one whether by eye or by computer when seeing the statistical samples. This paper presents a new method to hide text in text characters. The systematic method uses the structure of invisible character to hide and extract secret texts. The creation of secret message comprises four main stages such using the letter from the original message, selecting the suitable cover text, dividing the cover text into blocks, hiding the secret text using the invisible character and comparing the cover-text and stego-object. This study uses an invisible character (white space

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
The Writer Authentication by Using Syllables Frequency
...Show More Authors

An approach is depended in the recent years to distinguish any author or writer from other by analyzing his writings or essays. This is done by analyzing the syllables of writings of an author. The syllable is composed of two letters; therefore the words of the writing are fragmented to syllables and extract the most frequency syllables to become trait of that author. The research work depend on analyzed the frequency syllables in two cases, the first, when there is a space between the words, the second, when these spaces are ignored. The results is obtained from a program which scan the syllables in the text file, the performance is best in the first case since the sequence of the selected syllables is higher than the same syllables in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 05 2019
Journal Name
Journal Of Engineering And Applied Sciences
Secure Image Steganography using Biorthogonal Wavelet Transform
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Face Identification Using Back-Propagation Adaptive Multiwavenet
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF