Most drugs undergo some metabolism in the liver before excretion by the kidneys or bile. Thus, it is not surprising that liver injury may be provoked due to its exposure to various drugs and compounds. Drug-induced cholestatic liver injury may occur particularly under conditions of increased drug concentrations, genetic alterations in expression of enzymes or transporters. Additionally, the drug-induced cholestasis can be caused by direct toxic effects of drugs or their metabolites on different hepatic cell types or through an immune-mediated process. Amoxicillin/ clavulanic acid, an antibiotic that is therapeutically utilized for the treatment of a number of bacterial infections. Omega-3 fatty acids are unsaturated fatty acids that have roles in human physiology including αlinolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. This study was designed to examine the impact of coadministration of omega 3 with therapeutic dose of Amoxicillin/ clavulanic acid for 14 days on rats' liver. The animals utilized in this study were allocated into 3 groups (six rats each) as negative control, amoxicillin/ clavulanic acid, amoxicillin/ clavulanic acid and omega 3. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities; and serum tumor necrosis factor –alpha (TNF-α), interleukin 10 level were determined. The results showed significant increase (P<0.05) in serum activities of ALT, and ALP; and in serum IL10 compared to the corresponding level in negative control rats. Moreover, a significant decrease in serum activity of ALP, TNF- α, and IL10 levels (P<0.05) were observed in group of rats treated with the combination of omega 3 and amoxicillin/ clavulanic acid compared to amoxicillin/ clavulanic acid-treated rats for 14 days. In conclusion, this study demonstrated that co-administration of omega 3 with amoxicillin/clavulanic acid for 14 days moderately alleviate the injurious effects of the intended antibiotic on rats' liver and bile.
We report the detail characterizations and
In this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
Objective This study aimed to evaluate the effects of disinfectant solutions, namely, the alcoholic extract of Salvadora persica L. (A1 = 10% and A2 = 15%) and chlorhexidine digluconate (A3 = 2%), on the tear strength and hardness of room temperature vulcanizing (RTV) VST50F and heat temperature vulcanizing (HTV) Cosmesil M511 silicone elastomers before and after reinforcement with nanofillers (TiO2) and intrinsic pigment. Materials and Methods: A total of 320 specimens were prepared, with 160 specimens each for RTV and HTV silicone. Forty specimens were evaluated before disinfection and divided into two equal groups, namely, control (without additive) and experimental (with ad
The aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.
The syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show MoreThe cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
The direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245 V) versus Ag/AgCl in 0.1 M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1 Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47 s-1. The electrode was used as a hydrogen peroxide biosensor with a linear response over 3 to 240 µM and a detection li
... Show More