Ferric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of adsorption system. The results referred that the adsorption capacity increases with increasing ionic strength and it was in natural medium has a greatest value. So, the desorption process was examined to demonstrate the possibility of recycling of the adsorbent surface. The desorbed dye from the studied adsorbent surface in basic solution was better than acidic solution
The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
This study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreDrilling well design optimization reduces total Authorization for Expenditures (AFE) by decreasing well constructing time and expense. Well design is not a constant pattern during the life cycle of the field. It should be optimized by continuous improvements for all aspects of redesigning the well depending on the actual field conditions and problems. The core objective of this study is to deliver a general review of the well design optimization processes and the available studies and applications to employ the well design optimization to solve problems encountered with well design so that cost effectiveness and perfect drilling well performance are achievable. Well design optimization processes include unconventional design(slimhole) co
... Show MoreCalculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed
... Show MoreArthropod-borne infections, known as vector-borne diseases, are a significant threat to both humans and animals. These diseases are transmitted to humans and animals through the bites of infected arthropods. In the last half century, there have been a number of unexpected viral outbreaks in Middle Eastern countries. Recently, Iraq has witnessed an outbreak of the Crimean-Congo Hemorrhagic Fever virus with high morbidity and mortality rates in humans. However, very little is known about the prevalence and distribution of CCHFV in Iraq, and therefore, it is impossible to quantify the risk of infection. CCHFV is transmitted to humans through the bite of infected ticks. However, transmission can also occur through contact with the blood or ti
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreElectrochemical decolorization of direct black textile dye was studied in the presence of sodiumhydroxide (NaCl). Electrochemical cell occupy about 1 liter of working electrolyte supplied with graphiteelectrodes for both anode and cathode was constructed for this purpose. Decolorization percent, treatment time, power consumption, and pH were studied as a function of the applied voltage and salt concentration. Results show that decolorization increase with increasing salt concentration and applied voltage. Best decolorization of 86% can be achieved after 17 min at 7 volt and 5 g/l salt concentration. Further decolorization can be achieved but this will be accompanied with a sharp increase in power consumption. No significant decrease
... Show MoreThis research provides a novel technique for using metal organic frameworks (HKUST-1) as a gas storage system for liquefied petroleum gas (LPG) in Iraqi vehicles to avoid the drawbacks of the currently employed method of LPG gas storage. A low-cost adsorbent called HKUST-1 was prepared and characterized in this research to investigate its ability for propane storage at different temperatures (25, 30, 35, and 40 oC) and pressures of (1-7) bar. HKUST-1 was made using a hydrothermal method and characterized using powder X-ray diffraction, BET surface area, scanning electron microscopic (SEM), and Fourier Transforms infrared spectroscopy (FTIR). The HKUST-1 was produced using a hydrothermal technique and possesses a high crys
... Show More
