An efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols in two phases: The first phase is used to evaluate the route quality and networks’ energy consumption on small WSN with one mobile Sink Node (SN) and GMSs. The second phase, is used to evaluate the route quality and networks’ energy consumption on large network (four WSNs) with GMSs. The two phases are implementated by creating five sceneries via using NS2.3 simulator software. The implementation results of the proposed performance evaluation technique have demonstrated that SMSNDRP gives better networks’ energy consumption on small single network in comparison with KM-DGP. Also, it gives high quality route in large network that used four mobile SN, in contrast to KM-DGP that used sixteen mobile SNs. While in large network, it found that KM-DGP with sixteen mobile SNs gives better networks’ energy consumption in comparison with SMSNDRP with four mobile SNs.
This paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results was achieved. Tool life w
... Show MoreThe current study aims to compare between the assessments of the Rush model’s parameters to the missing and completed data in various ways of processing the missing data. To achieve the aim of the present study, the researcher followed the following steps: preparing Philip Carter test for the spatial capacity which consists of (20) items on a group of (250) sixth scientific stage students in the directorates of Baghdad Education at Al–Rusafa (1st, 2nd and 3rd) for the academic year (2018-2019). Then, the researcher relied on a single-parameter model to analyze the data. The researcher used Bilog-mg3 model to check the hypotheses, data and match them with the model. In addition
... Show MoreA robust and sensitive analytical method is presented for the extraction and determination of six pharmaceuticals in freshwater sediments.
To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The present paper deals with studying the effect of electrical discharge machining (EDM) and shot blast peening parameters on work piece fatigue lives using copper and graphite electrodes. Response surface methodology (RSM) and the design of experiment (DOE) were used to plan and design the experimental work matrices for two EDM groups of experiments using kerosene dielectric alone, while the second was treated by the shot blast peening processes after EDM machining. To verify the experimental results, the analysis of variance (ANOVA) was used to predict the EDM models for high carbon high chromium AISI D2 die steel. The work piece fatigue lives in terms of safety factors after EDM models were developed by FEM using ANSY
... Show More