The purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.
This paper presents numerical and experimental stress analyses to evaluate the contact and bending stresses on the teeth of spiral bevel gear drive. Finite Element Method has been adopted as a numerical technique which accomplished basically by using ANSYS software package. The experimental stress analysis has been achieved by using a gear tooth model made of Castolite material which has photoelastic properties. The main goal of this research is detecting the maximum tooth stresses to avoid the severe areas that caused tooth failure and to increase the working life for this type of gear drives.
The present study aimed to look for the differences in the oxidative stress status in sera and saliva samples of type 2 diabetic Iraqi patients with and without proliferative diabetic retinopathy. As well as to look for the possibility whether this status can be measured in saliva as an alternative sample to that of serum, hence to achieve that total oxidant status, total antioxidant status and oxidative stress index were measured in both sera and saliva samples of two groups of patients with type 2 diabetes mellitus and the healthy individuals. Upon the comparison between patients without proliferative diabetic retinopathy and the control sample the results showed presence of a significant increase (p < 0.05) of total oxidant st
... Show MoreRegression analysis models are adopted by using SPSS program to predict the 28-day compressive strength as dependent variable and the accelerated compressive strength as independent variable. Three accelerated curing method was adopted, warm water (35ºC) and autogenous according to ASTM C C684-99 and the British method (55ºC) according to BS1881: Part 112:1983. The experimental concrete mix design was according to ACI 211.1. Twenty eight concrete mixes with slump rang (25-50) mm and (75-100)mm for rounded and crushed coarse aggregate with cement content (585, 512, 455, 410, 372 and 341)Kg/m3.
The experimental results showed that the acc
... Show MoreIntroduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreObjective: One of the most important practical deficiencies of present denture base materials is fracture, therefore many
attempts have been made to reinforce of the repaired denture base resin. A desirable objective for this service is to obtain
optimum strength for repairs, which can be achieved by making available a good bond between original and repaired
materials.
Methodology: The present study was carried out to evaluate and compare the transverse strength of acrylic specimens
repaired by two different materials (hot-cure and cold-cure acrylic resin). A total of 50 specimens were prepared by hot
(40) repair: (10) by hot with retention bead, (10) by cold with retention bead and (10) repair by hot only, (10) repair
Abstract
In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l
... Show MoreObjective(s): The aim of this study is to compare the impact strength of a heat cured denture-base acrylic resin
reinforced with metal wire and glass fibers.
Methodology: Forty five specimens were prepared from pink heat cure acrylic resin. Specimens were grouped into;
group-I (control group) which consists of 15 specimens with no reinforcement, group-II which consists of 15 specimens
reinforced with metal wire, and group-III consists of 15 specimens reinforced with glass fibers. Specimens were tested
by using charpy impact machine.
Results: The result showed that there was a highly significant difference in impact strength value among the testing
groups at (P < 0.001).
Conclusion: The impact str
... Show MoreThe research aims to identify banking stress tests, which is one of the modern and important tools in managing banking risks by applying the equations of that tool to the sample. The banking sector considered one of the most vulnerable to sudden and rapid changes in an unstable economic environment, making it more vulnerable. Therefore, it is necessary to establish a special risk management section to reduce the banking risks of the banking business that negatively affect its performance.
The research concluded that there is a direct relationship between stress tests and risk management, as stress tests are an essential tool in risk management. They also considered a unified approach in managing bank risks that helps the bank to
... Show MoreTwo different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show More