The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in the last 5 meters from the total approach distance of 30 meters, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The ratio of the conversion coefficient of horizontal velocity to vertical velocity, The height of the fist is over the full length of the pole's stick) and these are considered independent variables, while the dependent variable was the prediction of achievement (Final height achieved by the jumper) as an output. The neural network architecture was represented by three layers, the first layer is the input layer with the five variables, and one layer is hidden and contains one node, while the last layer is the output layer that represents the outcome of the sport achievement prediction of male weight jumping. The momentum term and learning rate were chosen by 0.95 and 0.4 respectively, and the transfer function in the hidden layer was the sigmoid function and in the last layer was the sigmoid function, the historical data used in this model represent the Olympic achievements of a number of world champions, the results of this study were that the artificial neural network has the ability to prediction of sport achievement for determine the height of the jump of the pole player with a degree of accuracy of 90.10%, correlation coefficient and 95.60%.
The aim of this research is to employ the roundhouse strategy to study its impact on the students achievement of the 10th grade in physics and their core thinking. After the application of the research experience and gaining data, which was processed statistically using the statistical packages program (SPSS). The results of the researcher revealed the superiority of the students of the experimental group who studied using the roundhouse strategy on the students of the control group who studied the usual method in the achievement test. As results showed that there were statistically significant differences between the average scores of the experimental group and the average scores of the control group students in the core thinking test and
... Show MoreThe objective of the study was to predict crop coefficient (K) values for cucumber inside the greenhouse during the growing season 2014, using watermarks gypsum blocks and atmometer c apparatus during the growing stages and to compare the predicted values of the crop coefficient with different methods and approaches. The study was conducted in the greenhouses field within Al-Mahawil Township, 70 km south of Baghdad, Iraq. The watermarks soil water sensors and atmometer apparatus were used to measure crop evapotranspiration and reference evapotranspiration on daily basis, respectively. The comparison and the statistical analysis between the calculated K in this study and values obtained from greenhouse gave a good agreement. The root mean
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
To determine the potential of gingival crevicular fluid (GCF) volume, E‐cadherin and total antioxidant capacity (TAC) levels to predict the outcomes of nonsurgical periodontal therapy (NSPT) for periodontitis patients.
NSPT is the gold‐standard treatment for periodontal pockets < 6 mm in depth, however, successful outcomes are not always guaranteed due to several factors. Periodontitis‐associated tissue destruction is evidenced by the increased level of soluble E‐cadherin and reduced antioxidants in oral fluids which could be used as predictors for success/failure of N
Based economic units to technology to add innovations that lead to contribute to customer satisfaction, under intense competition and rapid development in customer taste, the economic units tend to apply the concepts that contribute to customer satisfaction led by the introduction of artificial intelligence techniques. In the production prominent role in the contributing and responding to the rapid changes in customer tastes, and consequent impact this in achieving customer satisfaction. Search gained importance of relying on artificial intelligence techniques to achieve customer satisfaction through speed of response to changes in the tastes of customers and thus be able to increase its market share، and sales growth، and to achieve a
... Show More