Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, concept drift, and verification latency problems using machine learning and deep learning. It also provides valuable information for academic and industrial researchers and opens new avenues for research aimed at developing robust fraud detection systems.
Background: Ultrasound is a valuable tool for evaluating fetal problems throughout pregnancy. Amniotic fluid anomalies have been associated with unfavorable maternal, fetal, and obstetrical outcomes. Objective: To determine the effect of echogenic amniotic fluid during term pregnancy on the presence of meconium stain liquor and pregnancy outcome. Methods: A cross-sectional study was conducted on 1080 term pregnant women who visited Al-Elwiya Maternity Teaching Hospital from May 1st, 2021, to May 1st, 2023. Ultrasound was used to analyze echogenic amniotic fluid and turbid liquor. The liquor state was tested either after an artificial membrane rupture in the vaginal delivery trial or during a cesarean section. Results: Echogenic amni
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreIntroduction The abortions reasons in several circumstances yet are mysterious, nevertheless the bacterial toxicities signify a main reason in abortion, where germs seems to be the utmost elaborate pathogens (Khameneh et.al., 2014) and (Oliver and Overton ,2014). Between numerous germs, Humano
This study was aimed to use plant tissue culture technique to induce callus formation of Aloe vera on MS. Medium supplied with 10 mg/l NAA and 5 mg/l BA that exhibit the best results even with subculturing. As the method of [1] 1g. dru weight of callus induced from A. vera crown and in vivo crown were extracted then injected in HPLC using the standards of Ascorbic acid (vit. C), Salysilic acid and Nicotenic acid (vit. B5) to compare with the plant extracts. Results showed high potential of increasing some secondary products using the crown callus culture of A. vera as compared with in vivo crown, Ascorbic acid was 1.829 ?g/l in in vivo crown and increased to 3.905 ?g/l crown callus culture . Salysilic acid raised from 3.54 ?g/l in in vivo c
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show More