Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlung ray. The results showed that, with the exception of the specimen with a partial replacement of 25% glass waste, adding fine aggregate in part by glass waste had a negative impact on the reactive powder concrete's attenuation properties. That means the sample’s density can be improved with the glass waste content ratio to 25%. Also, the bremsstrahlung radiation shielding capabilities of reactive powder concrete can be enhanced using glass waste of not more than 25%.
The pretreatment process can be considered one of the important processes in wastewater treatment, especially coagulation process to decrease the strength of many pollutants. This paper focused on using powdered date seeds as natural coagulant in addition to chemical coagulants (alum and ferric chloride) to find the optimum dosage of each coagulant that makes efficient removal of turbidity and chemical oxygen demand (COD) from domestic wastewater as a pretreatment process, then finding the optimum combined dosages of date seeds with alum, date seeds with ferric chloride that make efficient removal for both pollutants. Concerning turbidity, the optimum dosage for date seeds, alum and ferric chloride were 40 mg/l (79%), 70
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
In this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreThe last decade has seen a variety of modifications of glass-ionomer cements (GICs), such as inclusion of bioactive glass particles and dispensing systems. Hence, the aim was to systematically evaluate effect of mixing modes and presence of reactive glass additives on the physical properties of several GICs.
The physical properties of eight commercial restorative GICs; Fuji IX GP Extra (C&H), KetacTM Fill Plus Applicap (C&H), Fuji II LC (C&H), Glass Carbomer Ce
The scarcity of irrigation water requires procedures of specific. One of these procedures is the implementation of the rationing system (a period of the irrigation followed by a period of the dry). This system can have an impact on the properties of irrigation channels. Therefore, the study of rationing system for irrigation channels is important in both water resources and civil engineering, especially if they are constructed with gypseous soil. In order to assess the rationing system on gypseous canals stabilized with a specific ratio of cement, practical experiments were conducted to detect the effect of wetting and drying cycles on the physical and hydraulic behavior of this soil and calculation of some properties of soil such a
... Show MoreFiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreThis work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MoreCurrent design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the
... Show More