Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD), and nearest epicenter distance (REPi) to a seismic station. The derived PGA models are remarkably simple and straightforward and can be used reliably for pre-design purposes. The proposed PGA models (i.e., models I and II) obtained via the explicit formula produced using the PSO method are highly correlated to the actual PGA records owing to low coefficients of variation (CoV) of approximately 2.12% and 2.06%, and mean values (i.e., close to 1.0) of approximately 1.005 and 1.004. Lastly, high-frequency, low absolute relative error (ARE), which is below 5%, is recorded for the proposed models, thereby showing an acceptable error distribution.
The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi
Due to the need for controlling and regulating of feed pellet. Pellet that is imported or locally manufactured is accompanied by cracking and crumbling percentage that occur during transporting and distributing to animals, using conveyors and mechanical feeders. This study aimed to determine the effect of particle size and die holes diameter in the machine on broiler feed pellets quality in pellet durability, pellet direct measurement, pellet expansion, and pellet length. Three particle size 2, 4, and 6 mm, and three diameters of die holes in the machine 3, 4, and 5 mm, have been used. The results showed that changing the particle size from 2 to 4 then to 6 mm led to a significant decrease in pellet durability and pellet lengths, pe
... Show MoreThe posterior regions of the jaws usually represent a significant risk for implant surgery. A non-valid assessment of the available bone height may lead to either perforation of the maxillary sinus floor or encroachment of the inferior alveolar nerve and consequently to implant failure. This study aimed to evaluate the reliability of surgeon’s decision in appraising the appropriate implant length, in respect to vital anatomical structures, using panoramic radiographs.
Only implants that are inserted in relation to the maxillary sinus (MS) or the mandibular canal (MC) were enrolled
Three types of medical commercial creams Silvazine, Cinolon Tar and Hydroquinon Domina were incorporated in this study. The medical creams were taken directly and placed uniformly on the glass slide. Each type of pharmaceutical was weighed at 1 mg and dispersed on an area of 1x1 cm. This process ensures same thickness for all samples. The creams were analyzed by using double-beam UV/visible spectrophotometer Metertech SP8001. The absorption spectrum for each of samples was measured against wavelength range of 300–700 nm.
The ground state density distributions and electron scattering Coulomb form factors of Helium (4,6,8He) and Phosphorate (27,31P) isotopes are investigated in the framework of nuclear shell model. For stable (4He) and (31P) nuclei, the core and valence parts are studied through Harmonic-oscillator (HO) and Hulthen potentials. Correspondingly, for exotic (6,8He) and (27P) nuclei, the HO potential is applied to the core parts only, while the Hulthen potential is applied to valence parts. The parameters for HO and Hulthen are chosen to reproduce the available experimental size radii for all nuclei under study. Finally, the CO component of electron scattering charge form factors are also investigated. Unfortunately, there is no
... Show More???? ?? ??? ????? ???? ?????? ?????????? ????? ??????? ???? ?????? ????? ??? ??? ????? ?? ???? ??? ????? ????? ???? ????? ????? ?? 0-3cm, 10cm, 20cm, 30cm, 40cm ???????? ????? ?? ???? ????? ???????? ?? ???? ????? ?????? CR-39??????? ?? ??? ??? ?????????? ???????????? ???????? ???? n.cm-2.s-1 5 x 103?? ?????? ?????????? Am241- Be??? ???? ??????? ????????? ??? ?? ???? ????? ?????????? ??? ?? ????? ??????? ?????? 0.881±0.086??? ?? ??????? ????? ??? ????? ??? ?? ????? ????? ??? ???????? ???0.441±0.036 ??? ?? ???????
The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing m
... Show More