In this study, field results data were conducted, implemented in 64 biofilm reactors to analyses extract organic matter nutrients from wastewater through a laboratory level nutrient removal process, biofilm layer moving process using anaerobic aerobic units. The kinetic layer biofilm reactors were continuously operating in Turbo 4BIO for BOD COD with nitrogen phosphorous. The Barakia plant is designed to serve 200,000 resident works on biological treatment through merge two process (activated sludge process, moving bed bio reactio MBBR) with an average wastewater flow of 50,000 m3/day the data were collected annually from 2017-2020. The water samples were analysis in the central laboratory of the wastewater treatment plant in Barakia region by the Directorate Sanitation in Najaf is influential, wastewater at the treatment plant for Al-Bio-shaft saw major water quality parameters. The data was analysis of using a principal component approach a cluster study of the return-mass reactors. The results showed that the biological oxygen dem (BOD5, 126 mg / L), chemical oxygen dem (COD, 222 mg/L), total solids, total suspended solids (TSS, 223 mg/L) a pH of 7.6 over a period of 4years, also the optimum removal rate was 89 %of the BOD, under optimum conditions, 78 % of the chemical oxygen occurred in the air reactor by nitrification with an average ammonium removal yield of 67 %. The cluster analysis results showed that the years (2018, 2017, 2020) are a good level of treatment compared to 2020. The final effluent quality (an average value of three years) complies with the stringent regulations proposed by the Iraqi National Stards established by Regulation 25 of 1967 BOD / COD ratio were calculated Influence is 0.63 in total wastewater.
New isatinic hydrazone Schiff-base ligands, namely furan-2-carboxylic acid (2-oxo-1,2-dihydro-indol- 3-ylidene)-hydrazide (L1), thiophene-2-carboxylic acid (2- oxo-1,2-dihydro-indol-3-ylidene)-hydrazide (L2) and 2-(pyridine-2-yl-hydrazono)-1,2-dihydro-indol-3-one) (L3) are reported. The ligands were prepared by the condensation of furan-2-carboxylic acid hydrazide (L1), thiophene- 2-carboxylic acid hydrazide (L2), and 2-hydrazino pyridine (L3) with isatine. Monomeric complexes were prepared from the reaction of the corresponding metal chloride with the ligands. The ligands and their nine new complexes of the general formulae [M(Ln)2]Cl2 [where M = Co(II), Zn(II) and Cd(II); n = L1, L2 and L3] were characterised by spectroscopic methods (FTI
... Show MoreThe current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show More